
© 2008 Multifacet Project University of Wisconsin-Madison

Pathological Interaction of Locks
with

Transactional Memory

Haris Volos, Neelam Goyal, Michael M. Swift

Multifacet Project
 (www.cs.wisc.edu/multifacet)

Computer Sciences Department
University of Wisconsin—Madison

http://www.cs.wisc.edu/multifacet

2

Brain teaser

• What causes the following to deadlock in LogTM?

...
atomic {
 ...
 memcmp(s1, s2, n);
 ...
}

Dynamic Linker lock

3

Brain teaser

• What causes the following to deadlock in LogTM?
Thread 1 Thread 2

...
atomic {
 ...
 memcmp();
 elf_bndr()
 enter()
 rt_mutex_lock(&rtldlock)

...
free();
 elf_bndr()
 enter()
 rt_mutex_lock(&rtldlock)
 ...
 ...
 rt_mutex_unlock(&rtldlock)NACK

Not unique to LogTM

4

Executive Summary

• Problem
– Interaction of locks with transactional memory
– Legacy code uses locks

• Interaction Pathologies
– Identified five pathologies
– Affect a spectrum of TM systems

• Transaction-safe Lock (TxLock)
– Execute lock-based critical sections inside transactions
– Modified OpenSolaris libC

5

Outline

• Interaction Pathologies
• Transaction-Safe Lock (TxLock)
• Conclusion

6

Interaction Pathologies

• Pathological interaction
– Correct code making proper use of locks breaks under

transactions

• Identified five Interaction Pathologies
– Blocking
– Deadlock
– Livelock
– Early Release
– Invisible Locking

Affect a spectrum of TM systems

STM HTM

7

Transactional Memory Design

• Version Management
– Eager, in-place update
– Lazy, deferred update

• Conflict Detection
– Eager, early
– Lazy, late

• Conflict Resolution
– Requester wins
– Requester loses

• Atomicity
– Strong
– Weak

8

Deadlock

• Impacted Systems
– Strong atomicity
– Requester stalls
– e.g LogTM, OneTM

• Cause
– Two-level locking
– No knowledge of lock dependency

• Effect
– TM system stalls locks' logical owner

T1 T2

Lock(L)

Lock(L)

Spinning

Stalling

Non-TX

TX

Unlock(L)
NACK
NACK
NACK

tim
e

9

Livelock

• Impacted Systems
– Strong atomicity
– Requester wins
– e.g Bulk, LTM

• Cause
– Two-level locking
– No knowledge of lock dependency

• Effect
– TM system aborts locks' logical

owner

T1 T2

Lock(L)
Lock(L)

SpinningNon-TX

TX

Unlock(L)

Abort

Unlock(L)

Abort

10

Early Release

• Impacted Systems
– Weak atomicity
– Eager version management
– e.g McRT-STM

• Cause
– Restore values without lock held

• Effect
– Lose lock-based mutual exclusion

T1 T2

Lock(L)

Lock(L)

SpinningNon-TX

TX

Unlock(L)

Abort

Restore

11

Summary

Pathology Atomicity Version Conflict Systems
Management Detection

Blocking Strong Any Any
Deadlock Strong Eager Eager

Strong Any Any Bulk, LTM
Early Release Weak Eager Any
Invisible Locking Weak Lazy Any TL2

LogTM, Bulk
LogTM, OneTM

Livelock
McRT-STM

12

Outline

• Pathologies
• Transaction-Safe Lock (TxLock)
• Conclusion

13

TxLock Design

• Goals
– Execute lock-based critical section code safely
– Low overhead in non-transactional path

• Design elements
– Non-transactional lock operations
– Deferred Unlock
– Lock-aware Conflict Resolution

14

Testing & Acquiring a lock

• Escape when Testing & Acquiring
– Prevents transactional conflicts
– Allows to observe most recent lock value

• After Acquiring
– Compensate action to explicitly restore lock value on abort

15

When waiting on a lock?

• When waiting
– Inform Contention Manager about dependency

16

When releasing a lock?

• Coordinate release
– TM system: Releases transactional locks at commit
– TxLocks: Commit action to release logical-lock at commit

17

Implementation

• LogTM-SE
– Wisconsin GEMS

• OpenSolaris C Library
– POSIX adaptive mutex locks
– 80 lines

• Contention Manager and Policy
– 990 lines

18

Preliminary Results

• Experience
– Able to resolve deadlocks in libc malloc()

• Quantitative
– Development of workloads in progress
– No rigorous performance evaluation
– Overhead

Low overhead
Higher overhead

19

Summary

• Problem
– Legacy code uses locks
– Interaction of locks with transactional memory

• Interaction Pathologies
– Identified five pathologies
– Affect a spectrum of TM systems

• Transaction-safe Lock (TxLock)
– Execute lock-based critical sections inside transactions
– Modified OpenSolaris libC

20

Questions

?

21

Backup Slides

• TxLocks vs SpinLocks
• Rest of Pathologies

– Blocking
– Invisible Locking

• Implementation Details – lock
• Implementation Details – unlock
• Design Elements

22

Blocking

• Cause
– No support to abort while sleeping

• Effect
– Cannot abort blocked transaction

safely

T1 T2

Lock(L)

Lock(L)

Abort

Non-TX

TX

Blocking

23

Blocking

• Cause
– No support to abort while sleeping

• Effect
– Cannot abort blocked transaction

safely
– Blocking degenerates into spinning

• Example Systems
– LogTM
– Bulk

T1 T2

Lock(L)
Abort

Lock(L)

Abort

Lock(L)

Lock(L)
Abort

S
pin

n
in

g

Non-TX

TX

24

Invisible Locking

• Cause
– Weak atomicity
– Lazy Version Management

• Effect
– Lose lock-based mutual exclusion

• Example System
– TL2

T1 T2

Lock(L)
Lock(L)

Non-TX

TX

No Mutual Exclusion

25

TxLocks vs cxspinlocks

• Programming interface
– cxspinlocks: program using locks
– TxLocks: program using transactions

• Optimistic concurrency
– cxspinlocks: execute critical sections with optimistic concurrency
– TxLocks: execute critical sections w/o optimistic concurrency

• Overhead
– cxspinlocks: lock always introduces extra coherence traffic
– TxLocks: pay extra cost when you acquire locks

• Hardware support
– cxspinlocks: require special hardware: xcas and xtest
– TxLocks: no special hardware; applicable to both HTM & STM

26

Implementation Details - lock

1. void lock(txlock_t* mp) {
2.➊ BEGIN_ESCAPE;
3. if (set_lock_byte(&mp->txlock_lockw) == 0) {
4. mp->mutex_owner = (uintptr_t)self;
5. goto lock_acquired;
6. }
7. if (mp->mutex_owner == self) {
8. mp->rcount++;
9. goto lock_acquired_noTS;
10. }
11. if (txlock_trylock_adaptive(mp) != 0) {
12. if (txlock_lock_queue(self, mp) == ABORT) {
13.➊ END_ESCAPE;
14. ABORT_TRANSACTION
15. }
16. }
17. lock_acquired:
18. mp->timestamp = xact_timestamp();
19. lock_acquired_noTS:
20. if (in_xact()) {
21.➊ register_compensating_action(
22.➊ txlock_unlock_impl, mp);
23. }
24.➊ END_ESCAPE;
25. }

27

Implementation Details - unlock

26. void unlock(txlock_t* mp) {
27. BEGIN_ESCAPE;
28. if (mp->mutex_owner == self) {
29. mp->rcount++;
30. END_ESCAPE;
31. return;
32. }
33. if (in_xact()) {
34. register_commit_action(
35. txlock_unlock_impl, mp);
36. } else {
37. txlock_unlock_impl(mp);
38. }
39. END_ESCAPE;
40. }

28

1. Non-transactional Lock Operations

• Prevents
– Invisible Locking
– Livelock
– Some Deadlock cases

• Method
– Escape transactional control of lock code
– Restore lock value through compensating action

29

2. Deferred Unlock

• Prevents
– Early Release

• Method
– Do not release lock in place but at commit
– Recursive locking to avoid deadlock with itself

30

3. Lock-aware Conflict Resolution

• Prevents
– Deadlock
– Livelock

• Contention Manager
– Is provided with transactional and lock dependencies
– Builds full dependence graph
– Finds correct victim transaction

31

4. Block/Wake-up Protocols

• Prevents
– Blocking

• Protocols
– Locks and contention manager cooperate to wake-up a

blocked transaction
– Use Abort/Block protocol when CANNOT suspend a TX
– Use Block/Abort protocol when CAN suspend a TX

