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Transactional memory (T™M) promises to_S|mpI|fy multi- atonic { i nsert (heap, key)
threaded programming. Transactions provide mutual exclu- key = renove(heap) W ock(heap. 1)
sion without the possibility of deadlock and the need to as- & ock(heap. 1)

sign locks to data structures. To date, most investigations o

of transactional memory have lookedmaitrelytransactional unl ock(heap. L)

systems that do not interact with legacy code using locks. }
Unfortunately, the reality of software engineering is that _
such interaction is likely. stalling

~ We investigate the interaction of transactional memory rigyre 1. Interaction between lock-based and transactional
implementations and lock-based code. We identify and dis- -5qe can bring the system in an unrecoverable state.
cuss five pathologies that arise with different systems when

a lock is accessed both within and outside a transaction:

Blocking, Deadlock, Livelock, Early Release, and In- performance through optimistic concurrency. However, on
visible Locking. To address these pathologies we designed some paths the red-black tree invokes shared logging code,
and implementetransaction-safe lockeTxLock§ by mod-  \yhich uses locks. As a result, the locks in the logging code

ifying the existing lock implementation of the OpenSolaris are acquired within transactions.
C Library and extending the conflict resolution policy of a  An example where transactions may interact with locks

hardware transactional memory system. in library code occurs with théd.so dynamic linker used
. in UNIX platforms. Dynamic linking is performed on the
1. Introduction first call to a library function, and must use locks to prevent

Transactional memory (TML]7] promises to simplify multi- multiple threads from simultaneously linking a library. If
threaded programming by removing the need to assign locksa transaction makes the first call to a dynamically linked
to data. However, it is likely that transactional memory function, then the linker’s locks will be acquired within a
must co-exist with lock-based code for the foreseeable fu- transaction.
ture. While TM is most helpful to applications written from These examples demonstrate that transactions and locks
scratch, it may also simplify existing programs writtemngsi ~ may interact when legacy code is used in transactional pro-
locks. In both cases, transactional code may need to invokegrams. To date, though, most investigations of transaation
existing, lock-based code that has not or cannot (because itnemory have looked gburely transactional systems that
is available only in binary form) be converted to transac- have no interaction with code using locks. Unfortunately,
tions. Furthermore, in existing programs, it may be useful t our personal experience with our own LogTM]13] system
convert only key data structures or functions to transastio ~ reveals that non-trivighathological behaviomay arise.
leaving parts of the code to use locks. Figure[l presents an example of pathological behav-
When converting lock-based code to transactions, we ranior when transactions and locks interact. In the example, a
across many cases where transactional code naturally acheap data structure provided by a library is invoked from
quired locks that were also acquired by non-transactional @ transaction (Thread 1) and from non-transactional code
code. This happened for two reasons: (1) calls into applica- (Thread 2). When executed on the LogTM hardware T™M
tion subsystems that were not yet transactionalized and (2)systemI[1B], deadlock can occur when transactional and non-
calls into standard libraries. An example of the first case oc transactional threads compete for a lock. Thread 2 acquires
curs in the BIND DNS Servel 8. 9]. BIND is composed the lock non-transactionally. When Thread 1 attempts to ac-
of several subsystems that make extensive use of locks. Weguire the lock within a transaction, it finds the lock in usé an
converted the red-black tree structure, which stores the in spins reading the lock variable. Howevére act of read-
dividual name records, to transactions. This structuresis f  ing the lock variable adds it to the transactigoreventing
quently accessed during queries and updates and is a good fiether threads from changing it until Thread 1's transaction
for TM. Transactionalizing this subsystem while keeping th  completes. When Thread 2 tries to release the lock, LogTM
rest of the subsystems unmodified is sufficient to improve preventsitfromwriting the lock variable, and thereby eesle



Pathology Version Management | Conflict Detection | Atomicity Systems

Eager | Lazy Eager| Lazy
Blocking yes yes yes yes strong LogTM/LogTM-SE, Bulk [5]
Deadlock yes no yes no strong | LogTM/LogTM-SE, OneTMI[[2]
Livelock yes yes yes yes strong Bulk, LTM [IL]
Early Release yes no yes yes weak MCcRT-STM [17]
Invisible Locking no yes yes yes weak TL2 [B]

Table 1. Summary of the lock pathologies together with TM systemsaffd by these pathologies.

ing the lock, in order to preserve the transaction’s isotati (to completion) and in isolation (without intermediatetsta
Thus, the program deadlocks because Thread 1 cannot comvisible to others). TM systems, both hardware and software,
plete its transaction until Thread 2 releases the lock.ddhre can be characterized along four dimensiovex:sion man-
2 cannot release the lock until Thread 1's transaction com- agementconflict detectionconflict resolutiorandatomicity
pletes. strength

While this pathology has been presented in the con-  Version managemehtindles the simultaneous storage of
text of LogTM, it applies to other systems that block non- both newly written values (for commit) and old values (for
transactional code behind transactions, such as On&I'M [2].abort).Eager version managemestores new values in place
Investigating further, we found that similar pathologibat and old values elsewhere (e.g., a software lbgxy version
haviors arise in other TM systems as well. Specifically, we managemerieaves old values in place and stores new values
have identified five pathologies that arise when transastion elsewhere.
interact with locks:Blocking, Deadlock, Livelock, Early Conflict detectiorchecks for conflicts between concur-
Release, and Invisible Locking. These pathologies occur rent transactionsEager conflict detectiorhecks for con-
across the spectrum of TM system designs, including both flicts on each memory request, whikzy conflict detection
hardware and software systems. Tdllle 1 summarizes wheralefers the check until commit. Eager version management
the pathologies occur and shows which proposed TM sys- requires eager conflict detection to prevent other trarsact
tems they affect. We describe the pathologies in detail in from reading intermediate states.

SectiorB. These problems prevent current TM systems from  Conflict resolutiontakes action when a conflict is de-
interacting with locks. tected. For eager conflict detection, resolution centers on
Driven by these pathologies we have designed and imple-the requester, while for lazy conflict detection it centems o
mentedransaction-safe lock§xLock$ that interact grace-  the committer. The resolution policy can stall the requeste
fully with transactions and eliminate the pathologies. The (committer), abort the requester (committer), or abort the
TxLocks’ implementation entails modifications to the exist others. The choice of policy can have a large impact on per-

ing lock code in OpenSolaris’ C Library and extensions to formance[[#[18].
the conflict resolution policy of the TM system in use, in our Atomicity strengtleasons about the relationship between
case LogTM-SHEI21]. In contrast to other proposals integrat transactions and non-transactional co&rongly atomic
ing locks and transactions [[16], TxLocks do not depend on systems execute transactions atomically with respecttto bo
hardware support and work for a variety of TM systems. The other transactionand non-transactional coddn essence,
design and implementation of TxLocks is presented in Sec- these systems implicitly treat each instruction appeairtg
tionM. side a transaction as a singleton transacteakly atomic
We measure the additional cost of our TxLocks’ imple- systems execute transactions atomically only with respect
mentation over traditional locks in Sectidn 5 and finallydra  to other transactions, i.e. their execution may be intedda

conclusions in Sectidd 6. with non-transactional cod&l[3]. While weak atomicity lsad
to several programming pitfallsTIL9], most software transa
2. Background tional memory systems employ it to boost performance.

In this section we provide background material on transac- 5 5 | 5cks
tional memory and locking that is critical to understanding

their interaction. Locks provide mutual exclusion semantics for synchroni.zed
access to shared data. A thread that attempts but fails to
2.1 Transactional Memory acquire a lock has two optionspinor block

A transactional memory (TM) system allows the program-  With spin locksthe thread loops reading and writing the
mer to mark code regions as transactions. The TM system!OCK variable with atomic instructions such &snpare- -
is responsible for ensuring that the code executes atoipiical 2nd- Swap or Test - and- Set . Spinning allows fast acquisi-
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Figure 2. A case of theblockingpathology where transac-
tional Thread 1 is aborted instead of blocking on lock L. It (a (b)
spins, retrying continuously instead of waiting in the larn

Figure 3. A case of Deadlock in an eager conflict detec-
tion and eager version management strongly atomic system
tion of the lock when it is released but it consumes processor (@) and a case otivelock in a lazy conflict detection and
cycles while busy waiting. lazy version management strongly atomic system (b).
Blocking locksplace a thread on a sleep queue while the
lock is held and wake it when the lock is released. The ) o
thread sleeps in the kernel while waiting, which allows othe tinuously re-execute up to the point of acquiring the lock
threads to use the processor. The queue can be implementeffther than relinquish the CPU. Even if the TM system backs
in the kernel or in user space. Blocking has the benefit of Off by stalling before retrying a transaction, other threace
freeing the processor for other work but requires a system Still prevented from running on that processor.
call and context switches to sleep and wake up. If the TM system supports virtualization, as in spft-
Adaptive lockssombine the benefits of the two schemes Ware TM systems (STMs), then a problem may arise if the
by first spinning for a while and reverting to blocking when blqck_ed transaction must be aborted to resolve a deadlock.
that fails. This can occur after a fixed number of tries, when EXisting TM systems may not be able to abort suspended

the spinning thread is preempted, or when the thread holdingthréads safely. _
the lock is suspended. Figure[2 shows an example program that experiences the

blocking pathology. In this example, transactional Thread
3. Classification of Pathological Behavior 1 fails to acquire lock L, which is already acquired by the

_ _ _ ) non-transactional Thread 2. With a blocking lock, Thread 1
When transactional code acquires a lock, the interaction of try to wait in the kernel. However, in this example the

the transaction with non-transactional code contendimg f0 1\ system does not support virtualization and instead abort
the same lock can lead to abnormal execution behaviors,ihe yransaction, causing it to restart and immediatelydry t
which we callpathologiesWe consider these execution be- acquire the lock.

haviors as abnormal because they result from the execution

of otherwise correct code that makes proper use of locks.3.2 Deadlock

We have identified five behavior pathologies where the TM Systems affected

system’s behavior may lead to deadlock, livelock, or loss of  \/ersion Management Eager

mutual exclusion. This set has been useful in understanding cgnflict Detection Eager
TM systems but may not be exhaustive. _ ~ Conflict Resolution ~ Requester Stalls
We now discuss each pathology in detail, describe which Atomicity Strong

systems they affect, and describe with sample code the sce- o ]
nario under which they arise. Description In some TM systems, merelgttemptingto

acquire a lock within a transaction can prevent another

3.1 Blocking thread from releasing the lock and lead to deadlock. TM sys-

Systems affected tems with eager version management and strong atomicity
Version Management  Any must stall non-transactional threads until conflictinggra
Conflict Detection Any actions commit or abort to prevent them from reading in-
Conflict Resolution  Any termediate states of the transaction. This policy can lead t
Atomicity Strong deadlock when a transactional and a non-transactionaldhre

concurrently access a lock. This deadlock occurs both on the
lock variable itself and when a non-transactional thread co
flicts with any variable that a waiting transaction previgus

Description  With blocking and adaptive locks a transac-
tion may eventually block-wait in the kernel after failing t
acquire a lock. On any system, this requires that transatio ;- agssed.

can bevirtualizedto survive context switchind |15, 20]. If Figurel®(a) illustrates such a deadlock. Non-transactiona

the TM system does not support suspending threads in arpead 2 owns lock S when transactional Thread 1 tries
transaction and instead aborts the transaction, then the lo but fails to acquire it. Although the lock acquisition fails

becomes a spin lock. After aborting, the transaction witi-co



the transaction still brings the memory location of the lock Thread 1 Thread 2 Thread 1 Thread 2

into its read and/or write set because of the memory access |, (| | ock(L) atomc {

done by the atomic operatlﬂnfl'hus, Thread 1 prevents I ock(L)

subsequent access by any other thread, including access to atomic { e i Fock(L)

ref:eas:cef the I?ck, ur|1til its transaction hc:okTmitshorI abkorts. uni ock(L) unl ock(L) ...

This effectively results in two owners holding the lock at } unl ock(L)
-ABORT

different levels of abstraction. The non-transactionesaial y

logically owns the lock while the transactional thread owns (a) (b)

the memory containing the lock variable. These two owners

prevent each other from modifying the lock’s value, thereby Figure 4. (a) A case of Early Release in weakly atomic

preventing progress and leading to deadlock. Furthermore,eager version management system and (b) a cadavis-

this deadlock is undetectable by TM systems that detect onlyible Locking in weakly atomic lazy version management

memory-level dependencies. system. Both pathological cases break mutual exclusion en-
forced by lock L.

3.3 Livelock

Systems affected
Version Management  Any data protected by the lock without waiting to reacquire the
Conflict Detection Any lock, corrupting the data if another thread has since aeduir
Conflict Resolution Committer Wins the lock. Second, the TM system may restore the lock to its
Atomicity Strong unlocked state, even though it is owned by another thread.

Third, if the lock was acquired before beginning the transac
tion, the transaction will restart assuming it owns the |ock
even if another thread has since acquired it. In all cases, th
system violates the mutual exclusion provided by the lock.
Figure[@(a) shows sample code that is affected by this

Description In some TM systems, spinning by a non-
transactional thread can prevent a transactional thread
from releasing a lock and lead to livelock. Systems using
committer-wins conflict resolution and strong atomicity, s

that non-transactional code always causes conflictingtran . .
y ¢ pathology. Thread 1's release of lock L in a transaction

actions to abort, can have this pathology. C : .
Figure[3(b) presents sample code that experiences this'S immediately visible to other threads. As a result non-

pathology. Transactional Thread 1 acquires and releasks lo transacUonaI _Threaq 2 can acquire the IOC'.( before the*“’?‘”s
S in separate transactions. However, when non-transattion action commits. This operation is unsafe if the transaction

) . . . aborts and restarts. In such a case both threads incorrectly
Thread 2 spins trying to acquire lock S, it repeatedly causesth. K that th lusivelv h the lock and H
the transaction that should release the lock to abort. The,, "~ hat €y eXClUsIvely have the lock and consequently

transaction continuously attempts to release the locksut i the mutual exclusion semantics provided by the lock are lost

always aborted by the non-transactional thread's spinning3.5 |nvisible Locking
before it can commit. Thls_ leads to livelock that will only be Systems affected
resolved when Thread 2 is eventually preempted. Note that .
. . . ; Version Management Lazy
while locks may be released in any order without ill effects, : !
but reordering lock releases and transaction commits cause Conflict Detection Any
u N9 : ! US€ Conflict Resolution Any

a pathology. Atomicity Weak

3.4 Early Release Description  Systems with weak atomicity that buffer

Systems affected writes until commit may acquire locks invisibly: the ac-
Version Management Eager quisition of the lock and update of data are buffered un-
Conflict Detection Any til the transaction commits. As a result, concurrent non-
Conflict Resolution Any transactional threads may also acquire the lock, unawate th
Atomicity Weak it is held by a transaction, and access the data it protécts. |

the transaction commits while another thread holds the lock

Description Weakly atomic systems with eager version . . .

P y ys g the transaction will both update the data and potentialy re
management allow non-transactional code to access uncoml-ease the lock. violating the mutual exclusion provided b
mitted data. These systems may lose mutual exclusion Whenthe lock ' 9 P y

a transaction aborts after releasing a lock. Three problems™ ™ _. . .
may arise. First, the TM system will restore old values to Figure[3(b) shows sa_mple COd? t_hat EXpEriences this
pathology. Thread 1 acquires lock L inside a transaction. Be
1 Test-And-Sedlways writes a memory location bringing itinto the transac ~ cause of lazy version management, the acquisition is invisi
tion’s write setCompare-And-Swaglways reads a memory location bring-  ble until the transaction commits. Non-transactional &lre

ing it into the transaction’s read set and just brings the prgrocation into 2 finds the lock free and successfully acquires it withoutcon
the write set when it writes it on success.




Thread 1 Thread 2 The first goal requires that little additional code, and ndiad

atonic { spi nl ock S) tional synchronization, is encountered by non-transaetio
spi nl ocK S) . threads. The second goal requires that conflict resolution
e atomc { eventually allows all threads to make progress.
uni ock(S) We first present an abstract design of TxLocks that may
} } be applied to locks in any system. Later, in Secfiod 4.2,

we describe in detail an implementation of TxLocks for
Figure 5. A case that can either deadlock or livelock de- | ogTM-SE system running on Solaris.

pending on the conflict resolution used.

4.1 Design

Transaction-safe locks extend locks in four directions to

they exclusively have the lock and get into the critical sec- gemands from the TM system.

tion protected with lock L, violating mutual exclusion. i _
1. A transaction must be able to specify code to execute

3.6 Discussion when it commits §ommit actionsand aborts gompen-
The Deadlock and Livelock pathologies are dual to each sating actiony[2,[14]22]. These actions enable locks to
other in the sense that solving the one pathology may give defer I(_)Cklng operations until commit and perform undo
rise to the other. Deadlock appears when the conflict reso- ~ ©OP€rations on abort.

lution policy blocks requestors in favor of the owner of a 2. A transaction must be able tescapeinto non-
transactional line. However, if the conflict resolutionipgl transactional code without terminating the transac-
instead aborts the owner then the system can get into a live- tion [14,[22]. These escape actions allow modifications
lock. Figurel® illustrates sample code that can either dead- of the lock variable outside transactional control so that
lock or livelock depending on the conflict resolution used. they are immediately visible to all threads.

Stalling the unlock request results in deadlock but abgrtin
the transaction that encloses the unlock operation reisults
livelock.

Weak atomicity raises problems with locks because the
additional semantics of locking are not preserved by the TM ~ We next present the design of TxLocks by separately
system: they are not properly acquired or released duringdescribing the four design elements and how they fix the
commit or abort. This leads to thEarly Release and In- pathologies. We separate design elements by the pathol-
visible Locking pathologies. Prior study of weak atomic- ©9Y they prevent, so a system that does not suffer from all
ity anomalies[[I9] may be sufficient to explain why code pathologies does not need to implement the entire design.
that accesses a lock both within and outside a transaction
is problematic. However, we find value in identifying these
two pathologies because it enables construction of locks /N order to solve thelnvisible Locking pathology, we use
(described in the following section) that allow transagtio ~ €SCape actions to remove atomic operations that modify the

to syncronize access to data shared with non-transactional0ck variable from transactional control. Memory accessed
code. inside an escape action is not added to the transaction’s

Strong atomicity leads to pathologies when the depen- read and write sets, so modifications of the lock variable
dence of one thread on another through a lock is not visible ¢ immediately visible to the other threads. Because the
to the TM system. Thus, the TM system may stall or abort lock is modified outside transaction control, the changetmus

3. It must be possible to modify the conflict resolution pol-
icy to perform additional tasks when a transaction con-
flicts with a lock.

4.1.1 Non-transactional Lock Operations

the thread holding the lock, blocking forward progress. be explicitly reversed. The lock implementation registers
compensating action to release the lock if the transaction
4. Transaction-Safe Locks aborts.

This change also prevents thévelock and some cases of
the Deadlock pathology. Previously, a transaction that reads
a lock variable could prevent another thread from unlocking
a lock, leading to deadlock or livelock. If the transaction
accesses the lock variable only in an escape action then it
1. Fast-Path The overhead of TxLocks on the common- no longer prevents other threads from releasing the lock.

case uncontended path should be minimal.

In this section we propogeansaction safe lock@xLocks),
which cooperate with the transactional memory system to
solve the pathologies discussed in Sedfion 3. Our lock desig
is driven by two practical goals:

4.1.2 Deferred Unlock

A side effect of removing locks from transactional con-
trol is that strongly atomic systems become vulnerable to

2. Starvation-FreedomWhen locks and transactions con-
flict, all threads should eventually make progress.



action will not release the lock.

Thread 1 Thread 2 Thread 1 Thread 2 X - )
atomc { Ts=1 lock(L) Ts=1 Figurel® illustrates the two cases. On the left, the times-
Fock(L) : atomc {Ts=2 tamp of the lock owner (Thread 1) is older than the lock’s
} lock(L)Ts=3| ... | ock(L) Ts=3 . . , . .
} timestamp. Thus, aborting Thread 1’s transaction will re-
& & lease the lock. When the lock timestamp is older, shown on
e Ts=2 Q e Tse1 Q the right, aborting the transaction will not release thekloc
TS=1 Ts=3 TS=2 o3 and resolve a deadlock.
@) (b) In addition, the contention manager for TxLocks uses

both transactional dependencies (provided by the TM sys-

Figure 6. In (a) the thread acquires the lock inside a trans- tem) and lock dependencies (provided by the lock owner

action so the logical dependency can be broken by abortingfields) to detect deadlock that arise due to interactions of

the transaction. In (b), however, the thread acquires ttle lo  |ocks and transactions. When such a deadlock occurs, the
outside the transaction, so abort does not break the logicalcontention manager aborts the youngest transaction that ca

dependency. break the deadlock.

4.1.4 Block/Wake-up Protocols

the Early Release pathology, which previously impacted The Blocking pathology occurs for two reasons. If the TM
only weakly atomic systems. To prevent this pathology, the system does not support suspending transactional threads,
TxLocks implementation does not release a lock immedi- b|ocking leads to spinning_ If the TM System can Suspend
ater when called within a transaction. Instead, the unlock transactional threads, pr0b|em5 occur if it cannot aboitt-wa
code registers a commit action to release the lock after theing threads. In both case, the TM system must cooper-
transaction commits. This ensures that the lock is not re- ate with the lock code through a block/wake-up protocol
leased until there is no possibility of rolling back changes to achieve a graceful wake-up of the blocked transaction
to the data it protects. While other threads cannot acquirein the case of abort or when the lock can be acquired.
the lock before the transaction commits, TxLocks allow the \we have identified two possible protocolshort/Blockand
transaction to reacquire the lock if needed to avoid de&dloc  Block/Abort

ing with itself. Note that deferring release may decrease co For TM systems that cannot suspend a thread within a
currency because locks are held until the transaction com-transaction, thébort/Blockprotocol aborts the transaction
mits. and then suspends the thread, placing it on the lock’s sleep
gueue. When the lock is available, the lock code wakes
up the thread and restarts the transaction. The thread re-
The conflict resolution policies implemented in TM systems, executes the transaction and hopefully acquires the lock
such as committer-wins and requester-stalls, do not con-without blocking.

sider the effects of locks. As a result, they may select the  while this protocol seems feasible, it suffers from several
wrong victim (the transaction to stall or abort) and cause th drawbacks:

Deadlock and Livelock pathologies. We assume a software
contention managegxists that can implement sophisticated
policies, such as deadlock detection.

To prevent these two pathologies, TxLocks provide ad-
ditional information to the contention manager when locks
and transactions conflict. Specifically, locks provide info
mation about when the lock was acquired and which thread
owns the lock. Information about the lock owner is necessary
to build a dependency graph that includes both transactions
and locks.

In addition, both locks and transactions have timestamps
indicating when they were acquired. This enables a con-
tention manager to identify whether a lock is nested in a
transaction or a transaction is nested in a lock. Differenti
ating between these two cases is important because abortin i - <« | )
a transaction will release only the locks that are nesteint €M Of which lock it is waiting for before it blocks. This
transaction. If the lock timestamp is newer than the transac &//0ws the contention manager to resolve deadlocks that

tion’s timestamp, the transaction had begun before the |Ockarise due to interactions of locks and transactions. When a
was acquired and aborting the transaction will release the Plocked thread resumes, it checks whether it was aborted,

lock. However, if the lock is earlier, then aborting the gan ~ @nd if so removes itself from the lock's sleep queue, waking

4.1.3 Lock-aware Conflict Resolution

e If the transaction acquires multiple locks, it may never
acquire all locks without blocking, leading to starvation.

e If the transaction follows a different path upon restarting
it may need a different lock. This could lead to starvation.

e Under contention, the transaction may starve because it
does not acquire the lock immediately after resuming; it
must first execute from the start of the transaction up to
the call to acquire the lock.

However, this protocol may be the best option for systems
that cannot suspend threads in a transaction.

An alternative is th@&lock/Abortprotocol in which trans-
actions block on a lock and only abort on requests from the
§ontention manager. The transaction must notify the TM sys-



the next waiting thread. Otherwise the thread acquires the
lock and continues with the transaction.

Both protocols allow a transaction to safely acquire a
blocking lock without devolving to spinning. TxLocks im-
plement the Block/Abort protocol because our platform sup-
ports suspending transactions.

4.2 Implementation in OpenSolaris

We implemented a working version of TxLocks by extend-
ing the adaptive mutex lock implementation of OpenSo-
laris’ C Library with the four components presented in Sec-
tion[£]. We chose the adaptive mutex lock since this is the
one most often used in our workloads. As a base TM sys-
tem we use LogTM-SE, which is an HTM providing strong
atomicity, using eager version management, eager conflict
detection, and requester-stalls conflict resolution. Wesha
chosen LogTM-SE over the original LogTM system because
LogTM-SE supports virtualizing transactions and compen-
sating/commit actions.

LogTM-SE records a timestamp in hardware when a
transaction begins. This timestamp, taken from a loosely-
synchronized cycle counter such as hé ck (system tick)

in SPARC systems, is sent on all coherence requests and

is used for conservative deadlock detection: transactions
stalled on a conflict that receive a conflicting request from

an older transaction detect a possible deadlock and invoke

the contention manager.
Figurell shows pseudocode for top-level TxLodkstk
andunl ock functions. Shaded areas highlight addition of

new code to standard OpenSolaris adaptive mutexes. The 4’

lock routines have four sets of additions, corresponding to
the four design elements with each set marked in the figure
using one of the lowercase lettersl.

1. voi d | ock(txlockt* np {

2. BEG N_ESCAPE;

3 if (set_lock_byte(&mp*xlocklocky == 0) {
4 np rut ex owner = sel f;

5. gotol ock_acquired;

6.

7 if (np>utex owner == self) {

8 np * count++;

9. gotol ock_acqui red_noTS

10. }

11. if (txlocktrylockadaptive(mp != 0) {

12. 0 if (txlocklock_queue(self, nj == ABORT) {
13. @ END_ESCAPE;

14. 0 ABORT_TRANSACTI ON;

15. }

16. }

17. 1 ock_acquired:

18. nmp >ti mestanp =xact timestanp();

19. 1 ock_acquired_noTS

20. if (inxact()) {

21. e regi ster_conpensating_acti on(
2. t xl ock unl ock_i npl, np;

23.

}
24. @ END_ESCAPE;
25. }

26. void unlock(txlockt* nm) {
27.@ BEG N_ESCAPE;

28. if (mp>utex owner == self) {
29. np ¥ count- - ;

30.@ END_ESCAPE;

31. return;

32. }

33. if (inxact()) {

34. @ regi ster_conmit_action(
E58 t xl ock unl ock_i npl, np;
36. } else {

37. txI ock unl ock_i npl(m ;

38

. }
39. @ END_ESCAPE;

Figure 7. Pseudocode for TxLocks’ lock and unlock func-
tions. The shaded areas are new code, and the letters distin-

First, all lock code executes as an escape action, outsideguish code changes described in sedfioh 4.2.

of transactional control (set a: lines 2, 13, 24, 27, 30, 39).
This prevents thelnvisible Locking, Livelock, and some
cases of theDeadlock pathology. To ensure locks are re-

deadlock from the full dependency graph of threads, includ-
ing both lock-based dependencies and transaction dependen

leased on abort, the lock function registers a compensatinggjes, and decide how to resolve deadlocks. This resolves the

action to release the lock in this case (set a: line 21).

Second, the unlock function defers releasing the lock
when called within a transaction (set b: line 34). This pre-
vents the Early Release pathology by ensuring that locks
are held until the transaction commits. To allow the same
transaction to reacquire the lock without deadlocking with
itself we rely on the fact that OpenSolaris’s adaptive megex
can be acquired recursively (lines 7, 28).

Third, the lock implementation stores information about
when the lock was acquired for lock-aware conflict res-
olution (set c: line 18). We added ta nest anp field to
the mutex structure, in which the lock code stores LogTM-
SE’s transaction timestamp after acquiring the lock. Ferno
transactional code, this is the current value of ¢héck
counter. Conflict resolution also requires the lock owner,
which is already stored by OpenSolaris mutex locks (line
4). With this information, the contention manager can detec

Deadlock pathology, because the contention manager can
ensure that a transaction waiting for lock does not prevent
the lock holder from executing.

Fourth, the lock implementation adds code to support the
block/abort protocol (set d: line 12). The lock routine dkec
whether it was aborted while waiting, and if so exits the es-
cape action and aborts the current transaction. Additional
code for blocking is in the x| ock_| ock_queue function
(not shown for brevity). Before suspending the thread, this
function calls the contention manager to check for dead-
locks. After returning from the kernel, this code checks to
see if it has been aborted. If so, it returns ABORT to the lock
function, which aborts the running transaction.

When a thread conflicts with a transaction that is blocked
in the kernel waiting for a lock, it cannot resolve the con-
flict by stalling. Therefore, LogTM-SE traps into the con-



tention manager when a thread conflicts with a suspended Lock | Cycles

transaction[[211]. On such a conflict, the contention man- Solaris adaptive mutex 61

ager suspends the thread and enqueues it behind the thread TxLock non-transactional 89

with which it conflicts. When a thread conflicts with multi- TxLock transactional 185

ple (reader) transactions, the thread waits on the thretd wi

the youngest transaction, which is likely to end its transac Table 2. Cycles to acquire a lock.

tion last. We implement blocking behind a transaction with

user-level sleep queues, similar to Zilles etfall [22]. accurate for short code sequences, but can measure approxi-
43 Summary mate performance differences.

As we do not have a workload to explore the full per-

TxLocks resolve the five locking pathologies by moving formance of TxLocks, we measure the overhead of support-
locking code outside transactions (with escape actions)ing transactions in the uncontended case. Tduk- st r ess
and by invoking a software contention manager to detect program repeatedly acquires a native OpenSolaris adaptive
deadlocks and resolve conflicts. In the uncontended non-mytex outside a transaction, a TxLock outside a transaction
transactional case, the only additional code is to storestm o 5 TxLock inside a transaction. As there is only a single
tamp value (the calls to begin and end escape actions arenread, there is no contention. We measure the average num-
treated as no-ops). In the transactional case, the tramsact per of cycles to acquire the lock.
must register compensating and commit actions aswell. — Table[2 shows the results of our experiments. In the non-

TxLocks bear a strong resemblance to cxspinlocks in ransactional case, TxLocks add 45% to the native lock case.
TxLinux [I8]. The primary difference of the two lock prim-  Thjs is due to the extra instructions for entering escape
itives is the programmer interface. With cxspinlocks, pro- actions and saving a timestamp. In the transactional case,
grammers must specify a lock (which could be a single Ty ocks add 300% to the native lock case. The additional
global lock) for all critical sections, and the cxspinlock time is spent registering a compensating action to release
mechanism executes these regions with optimistic concur-ihe |ock on abort, which takes 79 cycles on LogTM-SE. This
rency when possible. However, specifying a lock introduces ¢ost could be further optimized to reduce locking overhead.
extra coherence traffic, which is unnecessary in the case These results demonstrate that TxLocks add little to the
when optimistic regions do not compete with exclusive ones. cost of locking for non-transactional code. The overhead fo
In addition, cxspinlocks requires special hardware, sich a acquiring TxLocks in transactions is higher, but provides
thext est andxcas instructions, making the technique only 5 sypstantial benefit by allowing transactions and lock to

applicable to HTMs. interact correctly.
In contrast, TxLocks allow the programmer to program

using transactions that can acquire locks if needed. Athou .  Conclusion
programmers cannot achieve optimistic concurrency for the
regions protected by the lock, they can reap the productiv-
ity benefits of using transactions while still interactingtw
lock-based code. In addition, TxLocks require no special
hardware and can therefore be used in a range of TM sys-
tems, including both hardware and software systems.

Many existing transactional memory systems do not inter-
act well with locks. We found five pathologies that may
arise, depending on the TM system design, when transac-
tions acquire locksBlocking, Deadlock, Livelock, Early
Release, and Invisible Locking. The pathologies under
strong atomicity occur for two reasons. First, transaction
5. Preliminary Performance conflict resoIL_Jtion is unaware of locks, and may abort the
only transaction able to release a lock and allow further
We are currently developing workloads that require locks progress. Second, lock variables may be locked both at the
and transactions to interact, and so we do not have COM-memory level, by the TM system, and at a logical level, by
plete results on how TxLocks perform. However, we have the |ock itself. If these two levels conflict then deadlock or
experimented with them in the BIND DNS server. Txlocks |ielock can arise. In weakly atomic systems, pathologies

allow the standard C runtime memory allocator to execute grise because the system does not respect lock semantics
correctly when called from a transaction. Prior to the devel qyring abort and commit.

opment of TxLocks, locks in the allocator caused deadlock 1o address these problems, we designed TxLocks,
and allocator had to be pulled completely into an escape ac-which prevent these pathologies with four techniques: non-
tion to execute correctly. ~ transactional lock operations, deferred release, lockraw
We measure the cost of TxLocks on the LogTM-SE sim- ¢onfict resolution, and a block/abort protocol. In testing
ulator [21], which uses Wisconsin GEMS]11]. It models a found that TxLocks add little performance overhead to the
32-processor Sparc chip-multiprocessor with a singleeiss  common case of uncontended locking yet provide the bene-

in-order pipeline and memory latencies similar to the Sun fjt of enabling transactions and locks to interact safely.
T1 (Niagara) processof [ILO]. This simulator is not cycle-
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