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Abstract
Sun has recently announced it will support a form of “best effort”
hardware transactional memory in its forthcoming multicore pro-
cessor, code-named “Rock”. In this paper, we report on early re-
sults and experience from an exploration of software mechanisms
that exploit this feature in a variety of contexts including: explicit
transactional programming in the C++ and JavaTM programming
languages, explicit lock elision in C++ and implicit lock elision in
Java, and use in Java concurrency libraries. This work has been con-
ducted using ourAdaptive Transactional Memory Test Platform,
which we plan to open source soon to allow other researchers to
explore the use of Rock’s HTM support.

1. Introduction
Sun recently announced [27, 28] that its forthcoming multicore
processor—code-namedRock—will support a form ofbest-effort
hardware transactional memory (HTM). Best-effort HTM does not
guarantee to support transactions of any size and duration, and thus
is free to simply abort transactions that exceed on-chip resources
for HTM or encounter difficult events or situations.

Rock’s HTM feature is an important but modest first step in
integrating HTM support into a mainstream commercial multicore
processor. We are therefore interested in understanding what mech-
anisms and workloads can effectively exploit it, as well as how its
limitations impact its usefulness in other situations, whether we can
effectively work around them, and what future modifications could
make HTM support more effective for more situations.

We have begun to explore a variety of software techniques for
exploiting Rock’s HTM feature. In this paper, we report on our
early progress in this exploration. A key enabler for this work is
a simulator developed recently by our group called theAdaptive
Transactional Memory Test Platform (ATMTP) [18]. ATMTP sup-
ports the same HTM interface as Rock and approximates the cir-
cumstances under which transactions will succeed and fail in Rock.

Although ATMTP isnot intended to accurately model Rock’s
implementation or performance, it provides a useful platform for
developing and testing code that will behave similarly on Rock.
ATMTP will soon be made available so other researchers and
developers can experiment with code that will exploit Rock’s HTM
feature. We hope the results and experience presented in this paper
will provide a valuable starting point for others.

In this paper, we describe our initial work in this direction for
the following contexts:
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• Implementing a red-black tree using our Hybrid Transactional
Memory compiler and library [2].

• Using HTM to simplify the implementation of and speed up the
obstruction-free “factory” for DSTM2 [9].

• Implementing nonblocking list and skip list algorithms for
the JavaTM concurrency libraries using a simple NCAS (N -
location compare-and-swap) interface, which is implemented
using HTM.

• Explicit use of HTM to elide mutual exclusion locks used to im-
plement a thread-safe vector data structure using a non-thread-
safe vector from the C++ Standard Template Library (STL).

• Explicit use of HTM to elide mutual exclusion locks in the libc
library.

• Modifying a Java Virtual Machine (JVM) to automatically elide
synchronization from synchronized blocks transparently to the
programmer.

We have achieved encouraging results, but we have also iden-
tified a number of issues that prevent us from achieving results as
good as we initially hoped. In some cases we have already worked
around the issues; in other cases we have some ideas but further
investigation is needed. All of our explorations are in preliminary
stages, and for some we simply report current status without any
particular result or conclusion.

Our work has also served to identify a few simulator bugs, and
has motivated improvements to ATMTP to facilitate the kind of
work we are doing. Some of these improvements have already
been made and have assisted in achieving the results described
in this paper; others are future work. The simulator will soon be
open sourced, (see [25] and [29] for details and updates) so others
will also have the opportunity to experiment with improving the
functionality of the simulator, in addition to using it for their own
research.

The rest of this paper is organized as follows: Section 2 presents
brief background on Rock and ATMTP. In Section 3 we describe
our work to date using ATMTP to explore a number of potential
uses for Rock’s HTM support, and report on status of our explo-
rations, preliminary results achieved, issues identified, and interest-
ing observations made during our preliminary work. We conclude
in Section 4.

2. The Adaptive Transactional Memory Test
Platform

In this section, we briefly describe salient features and limitations
of the HTM feature supported by ATMTP. A more detailed descrip-



tion, as well as a discussion of Rock and the relationship between
Rock and ATMTP can be found in a companion paper [18]. Al-
though ATMTP aims to provide a useful development platform for
code that will behave similarly on Rock, we emphasize that it isnot
intended as a completely accurate model of Rock; indeed, as we do
not yet have final silicon for Rock, it cannot be. In the remainder of
this paper, we restrict our attention to the HTM feature as modeled
by ATMTP.

2.1 Instructions and interface

ATMTP supports a standard SPARCR© instruction set architecture,
plus two new instructionschkpt andcommit and a newcheckpoint
status (cps) register. A transaction is started using thechkpt in-
struction, so called because itcheckpoints the register file so that it
can be restored if the transaction fails. Thechkpt instruction spec-
ifies a PC-relativefail address, where control is transferred if the
transaction fails for any reason.

If the transaction executes acommit instruction, the code exe-
cuted within the transaction is executed atomically and in isolation,
and control continues past thecommit instruction.

If the transaction fails, it appears as if thechkpt instruction
were an unconditional branch to the fail address, and none of the
code within the transaction were executed, with one exception: the
contents of thecps register may change to indicate the reason for
the transaction failure.

2.2 Reasons for transaction failure

Transactions in ATMTP can fail for a number of reasons. Here we
briefly describe those most relevant to this paper; a more detailed
and complete description appears in [18].

Conflict: A location read by the transaction is modified by another
thread, or a location written by the transaction is accessed (read
or modified) by another thread.

Cache geometry:The cache lines read by a transaction fail to fit
in cache because too many of them map to the same cache set.

Resource exhaustion:The transaction exceeds some resource
limit, for example, on the number of stores that can be per-
formed in a transaction.

Exception: An exception occurrs during the transaction’s execu-
tion. A relevant example for this paper is an exception caused
by a TLB miss.

“Difficult” instruction: The transaction executes an instruction
that ATMTP does not allow during transactional execution. A
example relevant to this paper is thesdivx instruction.

Function call: The transaction fails due to a function call. (Rock
is expected to have limitations that make transactions that call
functions likely to fail; ATMTP approximates these limitations.
Inlining can provide some relief from this cause of failure.)

2.3 System Model

ATMTP simulates a single-chip CMP system with a private L1
cache per core and a single shared L2 cache. In this paper, we
model single-chip CMP systems with between 2 and 32 processors,
in which processor cores and caches are connected by a low-latency
fully-connected on-chip network.

3. Using ATMTP to explore HTM-based
mechanisms

In this section, we describe several techniques for using Rock’s
best-effort HTM, and describe our progress in implementing and
testing these techniques using ATMTP. Specifically, we repeat ear-
lier experiments on hybrid transactional memory run on a previous

simulator of “generic” HTM support [2, 13], this time running them
using ATMTP to study differences introduced by Rock’s specific
features and limitations (Section 3.1). We also use HTM to sim-
plify and improve an implementation of a DSTM2 “factory” [9]
(Section 3.2), and to develop new implementations for linked lists
and skip lists for the Java concurrency libraries (Section 3.3). Fi-
nally, we attempt to improve various lock-based implementations
by using HTM toelide locks [20] (Sections 3.4, 3.5 and 3.6).

3.1 Hybrid transactional memory using ATMTP

The appeal of transactional memory lies in its potential to enable
scalable implementations of complex algorithms and data struc-
tures without the complexity of fine-grained locking or ad hoc ap-
plication of nonblocking techniques. This potential of transactional
memory has been demonstrated, for example, in the implementa-
tion of concurrentred-black trees, discussed below, using transac-
tional memory [10]. HTM implementations are particularly attrac-
tive, because they have significant performance advantages over
software implementations. However, there is an additional chal-
lenge when using best-effort HTM such as provided by Rock and
ATMTP, because programmers cannot always accurately predict
which transactions can succeed.Hybrid transactional memory [2]
is an effective way to exploit best-effort HTM to provide the sim-
plicity and flexibility of software transactional memory (STM) with
the efficiency (in most cases) of HTM. Hybrid transactional mem-
ory can execute transactions using HTM (if available), but can also
use software transactional memory (STM) for transactions that do
not commit in hardware.

The chief difficulty with hybrid transactional memory is making
sure that hardware and software transactions “play nicely together”.
In particular, we must be able to detect conflicts between hard-
ware and software transactions, so that the conflicts can be resolved
properly. Thus, hardware transactions must access metadata main-
tained by the STM. In HyTM, our initial hybrid transactional mem-
ory prototype [2], transactions executed using HTM augmented
every transactional load and store with code to detect conflicts
with concurrent software transactions. Simulations showed that this
approach imposed significant overhead compared with hardware
transactions that were not so augmented (e.g., because the underly-
ing hardware supported “unbounded” HTM) even when all trans-
actions completed in hardware. Furthermore, the requirement for
the STM to expose sufficient information for hardware transactions
to detect conflict sharply constrained the design space of the STM
component of HyTM.

We therefore proposedphased transactional memory (PhTM)
[13], a form of hybrid transactional memory that supports different
modes of operation and allows seamless transition between those
modes. In particular, we can have a mode that allows only hard-
ware transactions, and another that allows only software transac-
tions. Then hardware transactions need only check that PhTM is in
hardware-only mode, avoiding any per-access overhead. And when
in software-only mode, PhTM is free to use the best STM available.

In previous work [2, 13], we have shown that our HyTM and
PhTM systems can effectively exploit best-effort HTM support
to achieve substantially better performance than existing software
methods of similar programming complexity. However, this pre-
vious work was based on “generic” best-effort HTM support, not
tailored for Rock’s specific features and limitations. We have there-
fore repeated these experiments using ATMTP, with the goal of
evaluating our ability to produce similar advantages using Rock.
In particular, we implemented a concurrent red-black tree using a
transactional style of programming, and ran experiments using dif-
ferent transactional memory implementations.

A red-black tree [1] is a kind of balanced search tree that sup-
ports insert, delete, and lookup operations. Insert and delete oper-
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Figure 1. Performance experiments on red-black trees

ations traverse the tree from the root, searching for the appropriate
place in the tree to make an update. While many updates result in
only local changes, some require “rotations” to preserve the red-
black tree invariants, and occasionally these rotations propagate all
the way to the root.

Although sequential red-black trees are well understood, di-
rectly implementing a red-black tree that exploits concurrency
is challenging [4]. For scalability, it is important that operations
traversing down the tree not require exclusive ownership of the
nodes they read. On the other hand, rotations that propagate up the
tree generally do require exclusive ownership, so ownership access
of the affected nodes must be “upgraded” from shared to exclu-
sive. This creates the potential for deadlock; avoiding this deadlock
presents a significant challenge. Therefore, red-black trees pro-
vide an interesting test case for transactional memory: we want to
achieve an efficient concurrent red-black tree with programming
complexity similar to that required for a sequential one.

The first issue we encountered is that the restriction on function
calls within transactions (see Section 2.2) prevents us from suc-
cessfully using a recursive red-black tree implementation, which
cannot avoid nested function calls. It was not too hard to switch to
an iterative version we had used in another context, and with a little
inlining work we were able to circumvent this restriction.

Experimental observations

Following [13], in our red-black tree experiments, we prepopulate
the tree with 2000 keys from 0..4095 (i.e., keys have 12 bits, and
the tree is about half full), and then measure the (simulated) time
taken for each thread to execute 1000 operations chosen at ran-
dom according to the following distribution: lookup: 60%, insert
20%, delete 20%; each operation chooses a key value uniformly
at random from 0..4095. We ran this experiment using a simple
coarse-grained lock-based algorithm (oneLock) and using trans-
actions with five different transactional memory implementations:
HyTM running in software-only mode (stm); TL2 [3] (tl2); HyTM
[2] (hytm); PhTM (phtm); and PhTM with TL2 as its STM com-
ponent (phtm-tl2). The results for these experiments are shown in
Figure 1.

At the highest level, most of the results we achieve for red-
black tree using PhTM are qualitatively similar on ATMTP as
they were on our previous simulator that provides generic best-
effort HTM (see [13]): Both PhTM implementations are near or
at the top and mostly flat throughout their range, except for the
precipitous drop inphtm going from 24 to 32 threads. The pure
STM implementations start off the worst by a considerable margin
and then steadily improve as the number of threads increases, with
tl2 beatingstm by a factor of about 2 throughout the range. The
single-lock-based algorithm starts off strong, but declines as the
number of threads increases due to the increased contention. Under

low contention, all but a handful of operations are successfully
executed as hardware transactions. However, as discussed below,
hytm suffers a significantdecrease in performance when using
ATMTP compared with the previous simulator.

Beyond these observations, it is difficult to compare the re-
sults here with those presented in [13] because many factors have
changed since [13] was published. The most significant factor was
changing our simulated machine architecture from the single-core-
per-chip non-uniform memory system used in [13] to a single-chip
CMP system used by ATMTP. This change was enabled by our
switch from version 1.4 to version 2.0 of the GEMS toolkit from
the University of Wisconsin [16]. GEMS 1.4, on which our previ-
ous simulator was based, does not support simulating HTM on a
CMP. ATMTP, which is based on GEMS 2.0, allows us to model a
CMP architecture that is much closer to that of Rock. In particular,
interprocessor communication latency is much lower in the CMP
system than in the previous model, which explains the much slower
descent of theoneLock line in this graph compared to the equiv-
alent one in [13]. In addition, the HyTM library that implements
the STM (of both HyTM and PhTM) has undergone further devel-
opment since the publication of [13], and of course, as mentioned
earlier, the red-black tree implementation run in these experiments
is iterative rather than recursive.

While these results show no particular improvement in perfor-
mance under heavy contention over our previous results, we have
made some initial progress towards more realistic and robust con-
tention management. Specifically, because the simulator used for
the previous results provided only generic best-effort HTM, we had
no feedback about the reasons for transaction failures. This forced
us to use an inflexible policy for switching modes. We did not spend
a lot of effort tuning this policy, but we did tailor it to the bench-
mark at least somewhat, and the same choice was not optimal for
other benchmarks.

Because Rock and ATMTP provide feedback (via thecps reg-
ister) about reasons for transaction failure, we can now implement
more flexible and adaptive policies that use this feedback to make
better decisions. We have implemented a slightly more flexible pol-
icy that uses this mechanism to adapt to the workload conditions,
rather than specializing for the workload as we did in our previous
work. Briefly, we use feedback from thecps register to estimate
how likely retrying is to be successful and decide how often to retry
on that basis. For example, if a transaction executes an instruction
that is not permitted in hardware transactions, it will likely do so
again if retried, so we do not retry at all in this case. If the trans-
action fails due to conflict, our experience suggests that it is worth
retrying a significant number of times before giving up and exe-
cuting the transaction in software. Our simple mechanism retries
between 0 and 9 times depending on these factors, backing off ex-
ponentially with each retry after retrying immediately the first three
times.

Based on our experience to date, our simple retry policy appears
to be generally as successful as the hand-tuned one we used previ-
ously. We have not yet attempted further tuning of this policy, nor
have we experimented to see how well it adapts to other workloads.
No doubt we will find cases in which it does not do so well, and we
hope we will be able to make good use of the feedback provided
via thecps register to implement an adaptive policy that is effec-
tive across a range of benchmarks.

Red-black tree results using HyTM on ATMTP

We now return to the experimental results for HyTM on ATMTP,
which were much less encouraging than the results for PhTM de-
scribed above (see Figure 1). In particular, we found that even in a
single-threaded run, more than 30% of the operations failed to com-
plete as hardware transactions. The result was significantly worse



overall performance than we achieved in our previous experiments
based on generic best-effort HTM [13].

Simulator statistics indicate that for the single-threaded run, all
of these failures were caused by TLB miss exceptions: If the TLB
(translation lookaside buffer) does not contain an entry to assist
in translating the virtual address for a given memory access to a
physical address, an exception is generated to cause the appropriate
entry to be loaded into the TLB; these exceptions cause transactions
to fail. Because the transaction fails, the exception is not processed
so retries will likely fail again for the same reason. TLB misses can
occur both in the data TLB (DTLB) for data memory acesses and
in the instruction TLB (ITLB) for instruction fetches.

DTLB misses within transactions can be avoided using soft-
ware prefetching techniques, but because code placement is less
transparent to application code, a general solution for avoiding
ITLB miss exceptions may require compiler support. This example
clearly demonstrates the value of ATMTP: it enables us to identify
such issues and provides an environment for testing workaround
solutions before Rock becomes generally available.

3.2 Simplifying and optimizing DSTM2’s obstruction-free
factory

DSTM2 [9] provides a transactional programming interface for
the Java programming language, enabling researchers to plug in
and compare different software transactional memory (STM) im-
plementations using the same transactional application code. To
do so, one provides afactory for producing transactional objects
whose methods implement the STM. DSTM2 comes with two ex-
ample factories, theobstruction-free factory and theshadow fac-
tory. The obstruction-free factory implements the STM using the
obstruction-free DSTM algorithm [10]. This simple implementa-
tion requires a multiword metadata object called alocator to be re-
placed atomically. This is achieved by using a level of indirection,
which imposes significant overhead on every access to a transac-
tional object.

Several clever improvements to this algorithm have been de-
vised to eliminate this level of indirection, at least in some cases
[4, 14, 15, 26]. We are exploring the possibility of eliminating
this level of indirection entirely without significantly complicating
the code by using HTM to effect the atomic replacement of lo-
cators. Because DSTM2 is implemented in the Java programming
language, this requires us to expose an interface to the HTM fea-
ture to Java code. To do so, we extended thejava.unsafe facil-
ity in an experimental version of the Java HotSpotTM Virtual Ma-
chine. Specifically, we provide two methods,CHKPT andCOMMIT,
that enable programmers to execute HTM transactions. TheCHKPT
method executes thechkpt instruction, which starts transactional
execution, and returns 0. The fail address specified in thechkpt
instruction is within theCHKPT method, and the code there reads
the cps register and returns its contents. Thus, if the transaction
fails, the return value ofCHKPT is the contents of thecps regis-
ter, which indicates the reason for the failure (this value is always
nonzero in this case [18]). TheCOMMIT method simply executes the
commit instruction. We also provide anABORT method that causes
the transaction to fail. These methods can be used in the style shown
in Figure 2.

We believe this facility has the potential to support a variety
of powerful mechanisms. However, there are significant challenges
at several levels to successfully executing a hardware transaction
in an experimental STM implemented in Java running in a mod-
ified JVM on a simulator. For example, sophisticated managed
run-time environments such as the HotSpot JVM are a challenge
to explicit CHKPT andCOMMIT usage: the JIT compiler may emit
within a transaction body transaction-unfriendly safepoint polling
points, deferred symbol resolution, run-time invariant guards, or

final int cps = Unsafe.CHKPT() ;
if (cps == 0) {

... txn body ...
Unsafe.COMMIT() or Unsafe.ABORT()
...

} else {
... failure path ...
... decode cps for failure reason ...
... decide what to do ...

}

Figure 2. UsingCHKPT andCOMMIT methods.

so-called “uncommon traps”, etc. If executed in a transaction, these
will cause failure and roll-back, resulting in a nonzero return from
CHKPT(). Unfortunately, that also means the run-time environment
was unable to intercept and resolve the condition that needed atten-
tion, so retrying the transaction will likely result in persistent failure
and lack of progress.

We therefore started with a simple test: we modified the
obstruction-free factory of DSTM2 so that it uses small transac-
tions to access the locators atomically, thereby eliminating the need
for a level of indirection to achieve this effect.

One challenge that arises in testing this mechanism on the sim-
ulator is that our experimental JVM supports the use of hardware
transactions only in compiled code, not in the interpreter. By de-
fault, all code is interpreted initially, and the JIT compiler dynam-
ically compiles code that is executed frequently. However, even
when the code to start a transaction is warmed up sufficiently to
be compiled, the body of the transaction may not be. The result is
that a trap to the intepreter is executed inside the transaction; this
trap causes the transaction to fail. Therefore the interpreter does
not execute the code and, more importantly, the JIT statistics are
not updated to reflect the attempt to execute the transaction, thus
creating a chicken-and-egg situation in which the transaction code
never gets compiled and therefore never succeeds.

We work around this problem by specifying-Xbatch and
-Xcomp on the command line, which results in the immediate and
complete compilation of all executed methods. However, start-up
performance suffers considerably in this mode. In addition, it takes
the JVM considerable time to reach compilation steady-state and
achieve the same degree of inlining that would occur in the de-
fault interpret-then-compile mode, exacerbating the difficulty of
running long enough at simulation speed to achieve meaningful re-
sults. With all of these issues, it is tricky to orchestrate simulations
at reasonable speed with all necessary start-up code executed and
functionality enabled when we begin measuring.

Another issue we encountered was that code generated for type
casting values returned fromUnsafe.getObject inside a trans-
action may access type-specific metadata residing on pages not
mapped in the TLB, and the resulting TLB miss causes the transac-
tion to fail. We avoided this issue by factoring the type cast outide
the transaction.

This work is in its initial stages. Although we have gotten some
hardware transactions to commit in the modified obstruction-free
factory when running single-threaded, we have not yet managed
to do so reliably with multiple threads. We continue to study this
problem.

3.3 NCAS-based concurrency libraries in Java

The example uses of best-effort HTM described in the previous two
sections involve experiments with transactional programs. There
are still numerous issues to resolve before such programming styles
are widely adopted. In the meantime, best-effort HTM can be used
to improve performance and scalability of more traditional pro-



grams, including unmodified existing programs in some cases. The
remaining examples discussed below illustrate some possibilities.

In this section, we explore how HTM may be used in the Java
concurrency libraries, so that users of such libraries can benefit
from HTM even if they know nothing about it. Potential benefits
include improving the performance and scalability of existing func-
tionality and/or achieving simpler solutions, as well as providing
new functionality that has been too expensive or too complicated
to provide. To avoid subtle language integration issues in making
TM functionality available in Java, we used HTM to implement
a simple NCAS (N -location compare-and-swap) interface, which
encapsulates HTM’s ability to atomically read and modify multi-
ple memory locations. For this work, we have implemented only
DCAS (double-compare-and-swap).

Implementing DCAS

We implemented DCAS in a few different ways. We first used the
unsafe.CHKPT andunsafe.COMMIT methods described above to
write a short transaction. This approach yielded an interesting prob-
lem when the DCAS operands were references: In addition to stores
to the operands affected by the DCAS, the JIT compiler may also
emit code that accesses hidden JVM structures such as garbage
collector metadata (i.e., thecard table), array bounds limits, safe-
point checks, etc. Conflicts on this metadata caused transactions to
fail frequently enough to severely degrade performance. To work
around this problem, we hand coded in assembly a DCAS imple-
mentation that put card marking (i.e., setting bits in the above-
mentioned card table) outside of the transaction implementing the
DCAS. Most of our experiments have been run using this imple-
mentation.

Very recently, we modified the JVM based on the observation
that card marking is very often redundant: a bit being set in the
card table is already set, so the store does not change its value.
Thus, if the JVM checks the bit before setting it, and elides the
store if it is already set, then many stores are eliminated. Although
this introduces some overhead to check whether the card marking
is redundant, it greatly reduces the potential for false conflict.
With this modified JVM, we were able to use our original DCAS
implementation described above.

For this preliminary work, we have not yet implemented a soft-
ware alternative for the HTM transactions for these DCAS imple-
mentations. A complete solution would require either guarantees
from the best-effort HTM that, if repeatedly retried, these transac-
tions will eventually commit, or else a software mechanism to use
in the hopefully rare case in which a transaction fails repeatedly
and deterministically.

Improving library implementations using DCAS

As a first step in using HTM (in the guise of NCAS) to improve the
Java libraries, we are experimenting with implementing nonblock-
ing ordered-list-based sets, providing (as per thejava.util.Set
interface)add andremove methods for adding and removing el-
ements to the set, acontains method for checking whether an
element is in the set, and aniterator method that returns an iter-
ator object withnext andhasNext methods. Each call to thenext
method of an iterator returns an element of the set, with succes-
sive calls returning greater elements than previous ones, until all
elements in the set have been returned, at which point we say the
iterator is done and subsequent calls tonext throw an exception.
ThehasNext method returns whether there are any more elements
to return (i.e., the iterator is not done). Any element that is in the
set when the iterator is created and is not removed before it is done
must be returned by some call tonext; that is, although the iterator
itself is not thread-safe, its behavior is not arbitrary in the presence
of concurrent modifications to the list.

To our knowledge, no previous nonblocking list-based imple-
mentations provides the iterator functionality. Even with coarse-
grained locking, it is tricky to provide an iterator that neither copies
the entire list ahead of time nor prevents the list from being modi-
fied until the iterator is done.

A nonblocking CAS-based algorithm for a set without the iter-
ator was developed by Harris and simplified by Michael [6, 17],
but this algorithm requires the ability to “mark” a reference, so
that the reference and its mark can be modified atomically. To re-
move the element in a node of the list, the node’s next reference
is first marked, which abstractly removes the element, and then the
marked node (i.e., the node with a marked reference) is spliced out
of the list by redirecting the next reference of the predecessor node.
They implemented this algorithm in C/C++, in which a markable
reference can be implemented by “stealing” a low-order bit from
a pointer (provided that pointers to nodes are word-aligned so that
such bits would otherwise always be zero). However, this trick does
not work in Java; instead, the Java concurrency libraries provide
theAtomicMarkableReference class (AMR). However, using this
class introduces an extra level of indirection and other data manip-
ulation to extract the mark and reference, which renders implemen-
tations based on it expensive.

Lea developed an alternative way to encode markable references
in the implementation ofConcurrrentSkipListMap [12]: A ref-
erence is marked by changing it into a reference to a newly allo-
cated “deletion marker” node whose next field contains the original
unmarked reference. The marked node and the subsequent deletion
marker are then spliced out of the list together. Compared to the
AMR-based algorithm, this algorithm introduces an extra level of
indirection only for marked nodes (soon to be removed from the
list), and eliminates the extra computation in extracting the mark
and reference. However, it is much trickier, and thus offers more
opportunity for subtle bugs in its implementation.

Heller et al. developed the “lazy list” algorithm [7], which sim-
plifies theAMR-based algorithm and avoids the cost introduced by
AMR by separating the mark from the reference and guaranteeing the
atomicity of access using locks. This algorithm is highly efficient
because locks are taken only for nodes being modified; readers do
not take locks, and thecontains method is wait-free. However, it
is blocking.

We designed two nonblocking1 algorithms that exploit HTM
to eliminate the locks used by the lazy list, and that also provide
the iterator functionality. The first algorithm atomically accesses
only two locations, the mark and the reference to the next node
in each node. However, like all previous nonblocking algorithms,
threads must sometimes “clean up” nodes that have been deleted
by other threads. The second algorithm is even simpler, avoiding
the need for “clean up” by atomically accessing four locations
(the marks and references in two nodes) when removing a node.
Thus, the first algorithm uses DCAS (double-compare-and-swap),
the second 4CAS. So far, we have implemented only the DCAS-
based algorithm.

Any of the nonblocking sorted lists described above can be used
as the basis for a nonblocking skip list [11]: Layers of these sorted
lists referring to keys randomly chosen along intervals of2k for
k < lg(n) serve as indices, wheren is the size of the set of
keys. While this adds per-node time and space overhead, it not
only reduces the average uncontended path length to find a key
from O(n) to O(log n), but also similarly reduces retry costs upon
interference. In practice, skip lists of this form appear to be the most
efficient and scalable sorted data structures suitable for everyday

1 These algorithms are lock-free if the NCAS operation is lock-free. How-
ever, our HTM-based implementation of NCAS is only obstruction-free [8].
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Figure 3. Performance experiments: DCAS lists and skip lists

use. We implemented a skip list of this form based on the DCAS
version of sorted lists.

Using the simulator, we compared our DCAS-based implemen-
tation, using both thejava.unsafe facility (JDCAS) and the
hand-coded native DCAS (NDCAS), with a coarse-grained lock-
based implementation (one lock for the whole list), and versions
of the algorithm that either use theAtomicMarkableReference
class to access the mark and reference atomically (AMR), or use the
“deletion marker” nodes instead of markable references (DM). We
also compared them with two skip list implementations: the stan-
dard one found injava.util.concurrent (SkipList), which uses
deletion markers, and one that uses our hand-coded native DCAS
(we have not yet run these experiments with thejava.unsafe-
based DCAS).

Figure 3 shows the results of running varying numbers of
threads, each repeatedly executing threecontains methods and
one each ofadd andremove methods, all with randomly gener-
ated integers from 1 to 64. As expected, the lock-based algorithm
performs well in the single-threaded case, but deteriorates as more
threads access the set concurrently. In contrast, the throughput of
all the nonblocking algorithms increases almost linearly as the
number of threads increases, with most lines leveling out, or even
dipping slightly at 32 threads. Also as expected, throughout the
entire range, the absolute throughput of theAMR-based algorithm
is about 30% lower than that of the other three list algorithms, and
the two skip list algorithms’ throughput are about 30% higher (re-
flectingO(n) versusO(log n) path lengths, for the fixed value of
n = 64 used in this experiment).

One surprising result is that theJDCAS line continues to rise
from 24 to 32 threads, beating out even the skip list algorithms at 32
threads. We expected it to perform slightly worse than the algorithm
that used the hand-coded native DCAS, and we are investigating
this matter. We have some plausible explanations for this result, but
we have not yet tested them.

3.4 Lock elision in STL

In this section, we describe an experiment that uses best-effort
HTM to implement scalable thread-safe data structures using un-
modified non-thread-safe versions from the C++ Standard Tem-
plate Library (STL) [24]. We can easily achieve a thread-safe im-
plementation using coarse-grained locking (i.e., with a single lock
to protect the entire data structure). Although correct, the resulting
implementation is not scalable: it does not exploit concurrency be-
tween concurrent operations, and requires every operation to mod-
ify the lock, even if the operation does not modify any data.

To make lock-based programs more scalable, Rajwar and Good-
man proposedspeculative lock elision (SLE) [20, 21], in which
a processor exploits speculation and cache coherence hardware to
speculatively execute a critical section without acquiring the lock,

// The lock-elision macros, to be used around
// an atomic block. Parameters:
//
// ACQUIRE_ST: A *statement* -- acquire lock.
//
// LOCK_MINE_OR_FREE_EXP: A boolean *expression* --
// evaluate to true if holding the lock or if lock
// is free.
//
// RELEASE_ST: A *statement* -- release lock.

#define TXLOCK_REGION_BEGIN(ACQUIRE_ST, \
LOCK_MINE_OR_FREE_EXP) \

{ \
UINT64 __HTfailures = 0; \
bool __IhaveLock = false; \
while (!beginHT()) { \

__HTfailures++; \
if (__HTfailures >= MaxHTFailures) { \
__IhaveLock = true; \
ACQUIRE_ST; \
break; \

} \
while (!(LOCK_MINE_OR_FREE_EXP)) ; \

} \
if (!(LOCK_MINE_OR_FREE_EXP)) abortHT();

#define TXLOCK_REGION_END(RELEASE_ST) \
if (!__IhaveLock) { \

commitHT(); \
} else { \

RELEASE_ST; \
} \

}

Figure 4. Macros for using HTM to elide lock acquisitions.

provided that it is not held by some other processor. Conflicting
memory accesses (including acquiring the lock) trigger misspecu-
lation, causing the processor to roll back to the beginning of its crit-
ical section, at which point it may either retry speculatively or else
acquire the lock as normal. However, because SLE is implemented
in hardware, which cannot take into account application-level in-
formation, it may be applied in contexts where it is not beneficial,
possibly even degrading performance in some cases.

Best-effort HTM enables efficient lock elision insoftware, us-
ing hardware transactions to execute critical sections speculatively.
Performing lock elision explicitly in software is much more flexi-
ble [5, 19, 22]: we can ensure the technique is used only in cases
where it is likely to be beneficial, and we can use different poli-
cies and heuristics for backoff and retry in different situations, etc.
In this and the next two sections, we explore the use of this tech-
nique in several contexts, with varying degrees of involvement by
programmers at various levels.

To facilitate introducing a lock and attempting to elide it using
hardware transactions, we developed some simple macros for ac-
quiring and releasing a lock. The macro that acquires the lock takes
two parameters, astatement that acquires the lock and anexpres-
sion that returns true if and only if the lock is free or the thread
evaluating it holds the lock (i.e., if the lock is not held by some
other thread). The macro that releases the lock takes a single pa-
rameter, which is a statement that releases the lock.

These macros can be defined to produce code to simply ac-
quire and release a lock (i.e., emit the textttACQUIREST and
RELEASE ST statements) or they can be defined to produce code
that attempts to elide the lock using HTM. Our versions of the
macros that perform the latter are shown in Figure 4. These macros



use thebeginHT and commitHT functions to begin and commit
transactions as follows:

• beginHT: Begins a hardware transaction, returningtrue. If the
transaction later aborts, control returns to the beginHT invoca-
tion, which returns a second time, with the valuefalse.

• commitHT: Commits the hardware transaction.

The macro for acquiring a lock first starts a hardware transaction by
callingbeginHT, and then checks that the lock is not held by some
other thread, aborting the transaction if the check fails. When the
check succeeds, it executes the critical section transactionally, and
the macro for releasing the lock attempts to commit the transaction.
Notice that the first macro opens a lexical block that is closed by
the second macro, so these macros must be used in block-structured
pairs. If the transaction fails, the body of the while loop is executed,
which may give up and acquire the lock the traditional way if the
transaction fails too many times, setting a flag (__IhaveLock) so
that the macro ending the critical section knows that it must execute
the code to release the lock; otherwisebeginHT is called again
to retry the transaction. To avoid the so-calledlemming effect, in
which one operation acquiring the lock causes all the others to do
so too, an operation waits until the lock is not held before retrying
its transaction. For now, our simple prototype does not use thecps
register to decide whether to retry: it just retries a fixed number of
times (four in the experiments presented here), and then acquires
the lock if it still does not succeed.

We first tried to apply this technique for implementing a thread-
safe implementation of an STL data structure onhash map. This
experiment failed: we found that all transactions aborted. After a
short investigation, we determined that the problem was that every
hash map operation computes the index of the appropriate hash
bucket using thesdivx instruction, which is not allowed within
transactions (see Section 2). For this experiment, we were inter-
ested in what can be achieved by putting a wrapper around code in
a standard, unmodified library, so factoring this calcuation out of
the transaction was not an option. We therefore tried applying the
same technique to a different STL data structure, namelyvector.

The vector data structure consists of an array of elements
of some type and supports constant-time access to any element,
constant-time insertion/deletion of elements at the end, and linear-
time insertion/deletion at any other position. For workloads in
which most operations on the vector are accesses to individual el-
ements distributed over the vector, it seems likely that using HTM
to elide a single lock protecting all operations on the vector could
significantly improve performance by allowing many operations to
execute in parallel. For workloads in which there are frequent inter-
nal insertions and deletions, HTM seems less likely to be effective
because concurrent insertions and deletions affect a relatively larger
amount of data and are more likely to conflict with each other, cre-
ating conditions under which the limited best-effort HTM transac-
tions supported by ATMTP are unlikely to succeed.

We designed the following experiment to observe the perfor-
mance impact of HTM-assisted lock elision: We start with a vector
of 100 elements, each representing a counter initialized to 20. Each
thread performs 10,000 iterations, each of which accesses a ran-
domly chosen counter, performing an increment (10%), decrement
(10%) or read (80%) on the counter. Operations that decrement a
counter to 0 also delete the counter from the vector, and operations
that increment a counter to 40 also “split” the counter by inserting
a new one right after it, and setting both to 20.

As the number of threads increases, the chances of “underflow-
ing” or “overflowing” a counter—resulting in a heavyweight inser-
tion or deletion operation on the vector—increases. This way, we
can observe performance with such operations being very rare and
also with more of them occuring. (None occurred in experiments
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Figure 5. Performance experiments for STLvector with lock
elision

with fewer than four threads, at which point a few did occur; at 32
threads, well over 100 insertion and deletion operations occurred.)

Results shown in Figure 5 indicate that using HTM to elide the
lock resulted in substantially better simulated performance, both
when the heavyweight operations are rare and when they are more
frequent. While we should be careful not to read too much into
absolute performance numbers produced by such simulations, we
are very encouraged that we were able to successfully execute a
large fraction of operations using hardware transactions, and we
believe this will translate to similar performance trends in real
hardware. With the same caveats in mind, it is interesting to note
that the HTM-assisted lock elision improved performance even in
the single-threaded case. While only measurements on (precise
performance models of) real machines can really confirm it, we
believe it is reasonable to anticipate similar advantages in Rock.
Neelakantam et al. [19] make a similar observation, again using a
simulated system.

We also implemented a version ofvector that used read-
write locks to allow parallelism between read-only operations; our
macros were sufficiently general to allow us to elide these locks
too. When we did no lock elision, this optimization produced a no-
ticeable performance improvement at higher levels of parallelism.
However, in the versions with lock elision, the lines essentially
overlap—primarily because the read count in the read-write lock
is written by all readers, which inhibits scalability when the read
operations are mostly quite short. A fine-grained locking version
might perform somewhat better than the read-write lock version,
but would entail significantly more programming complexity due
to the need to avoid deadlock, and because of the dynamic nature
of the data (insertion and deletions move data and thus complicate
the mapping between data and the fine-grained locks).

3.5 Lock elision in libc

It is also possible to use best-effort HTM to elide locks in existing
lock-based code by replacing the traditional acquire and release
calls with calls to counterpart routines in a new library that supports
lock elision in a manner similar to that described in the previous
section. In this section, we discuss our experience in initial attempts
to do this.

There are, of course, many lock-based libraries to which we
might try to apply lock elision. For our experiment, we chose
libc, focusing on the standard memory allocator that provides the
malloc andfree routines. While several scalablemalloc imple-
mentations have been proposed, the standard libc implementation
uses a single lock to protect its data structures. This is a common
source of performance bottlenecks for C and C++ applications that
rely heavily on dynamic memory allocation. We wanted to see if a



scalable implementation could be achieved by a simple application
of lock elision.

Our initial results indicate that it isnot effective to simply re-
place the lock acquire and release calls inmalloc with the new
transactional methods, for several reasons. First, because the stan-
dard malloc implementation uses a single global lock, there has
been no motivation to distribute the data structures protected by
this lock, so for example concurrentmalloc calls for the same size
all attempt to allocate the same chunk of memory, so they all con-
flict. Other problems include nested function calls executed inside
transactions (see Section 2.2).

We experimented with small-scale changes to the library code to
make it more amenable to lock elision, for example by eliminating
function calls in the common case forfree(). As a result we were
successful in eliding the lock infree() a nontrivial fraction of the
time, but this was still unsuccessful more often than not. Whether
this would result in a performance gain or loss depends on precise
costs of successful and unsuccessful transactions, of acquiring and
releasing the lock, etc. Given that our simulator does not accurately
model Rock’s performance, we cannot draw a conclusion about this
from our data. However, we doubt there is a significant gain here.
Furthermore, because more scalable implementations already exist,
it does not make sense to expend considerable effort to restructure
the standardmalloc/free code so that it is more amenable to lock
elision.

Rather than making another guess about where lock elision
might be useful, we have begun work on a tool that helps us
look for critical sections that may prove amenable to lock elision.
Specifically, we modified an internal simulator (not the one used
for the rest of the results reported in this paper) to profile critical
sections in running code and record the number of violations of
Rock’s limitations that occur in each one. The idea is that, if
there are zero, then the critical section should be amenable to lock
elision; if there are a small number, it may not be too difficult to
restructure the code slightly to make it amenable; and if there are
many this is probably not a promising critical section to elide.

We are still working on this tool as of the publication date,
and we are not yet ready to present useful data from it. From our
preliminary results, however, we observe that many transactions
are counted as failing due to function calls (see Section 2.2). If
this turns out to be correct, one option to consider is to have the
compiler avoid thesave and restore instructions2. Our tool is
not yet sufficiently refined to allow us to determine how often
this would be sufficient to make a transaction succeed that would
otherwise fail. We plan to continue our work on the tool as well as
using it to look for more opportunities for lock elision.

3.6 Eliding locks for Java synchronized blocks and methods

Finally, we discuss a particularly interesting opportunity to use
lock elision to improve the scalability of existing code. The
synchronized keyword in the Java programming language in-
dicates that a particular code block or method should be executed
while holding a lock (either a specified lock or the lock for the ob-
ject on which a synchronized method is invoked). We can be a little
more ambitious in this context because the decision of whether to
attempt to elide a lock can be made by the JIT compiler, which
can use run-time information to heuristically choose to elide locks
for critical sections that seem likely to benefit from doing so, and
in cases in which lock elision turns out to be ineffective, we can
dynamically revert to the original locking code.

2 This could be accomplished by supporting something like gcc’s-mflat
option [23] (which is no longer supported as of gcc 4.0.4), orby using stack
manipulation tricks or heap memory to turn a called function into a leaf
routine, which then won’t necessarily need to allocate a newstack frame.

To explore the feasibility and potential value of using Rock’s
HTM feature to elide locks for synchronized blocks and methods in
the Java programming language, we modified the Java HotSpotTM

Virtual Machine. The results and conclusions presented below are
similar to those presented by Goetz [5], who describes similar
explorations using a different VM and different hardware support.
Neelakantam et al. [19] also explore using HTM to elide locks in a
different VM with different (simulated) hardware support.

Our prototype JVM attempts to elide locks forall synchronized
blocks and methods. Although significant additional engineering
work is clearly required to make this technique useful in general,
running our simple prototype over ATMTP allows us to experiment
with different synchronized blocks and methods to evaluate condi-
tions under which they can be executed successfully using best-
effort HTM. We report below on our first steps in this exploration.

Our prototype JVM implements lock elision for synchro-
nized blocks by emitting special code for themonitorenter and
monitorexit bytecodes. This code is essentially the same as the
code for the macros we used to elide locks in Section 3.4 (see Fig-
ure 4): The code formonitorenter either acquires the lock in
the traditional way and returns, or executes achkpt instruction to
begin transactional execution, checks that the lock is not held, and
then sets a flag to record that the lock is being elided; if the lock is
held, then it executes atcc (trap on condition code) instruction to
cause the transaction to fail. The code formonitorexit releases
the lock in the traditional way if the lock is not being elided, and
executes acommit instruction to attempt to complete transactional
execution of the critical section if it is. If the transaction fails for
any reason (including that themonitorenter code executestcc
because the lock is already held), control returns to a fail location
in the code formonitorenter, where the transaction is retried. If
too many retries occur, the lock is acquired and the critical sec-
tion is executed nontransactionally. Lock elision for synchronized
methods is implemented similarly.

We have not yet experimented extensively with the retry policy
and for now it does not make use of the feedback provided in the
cps register. Note, however, that because the choice to employ
lock elision is made by the JIT compiler, many of the reasons
for transaction failure can be eliminated. For example, it would
not make sense for the compiler to attempt lock elision for a
critical section that executes some instruction that is not allowed in
hardware transactions, or that clearly performs more stores than the
hardware will support. Therefore, dependence on thecps register
may be lower in this context than in HyTM and PhTM, where
transactions execute user code that is (at least for now) not analyzed
by the compiler.

For our initial experiments with our modified JVM, we chose
two simple collection classes,HashTable andHashMap, from the
java.util library. Both support key-value mappings.HashTable
is synchronized;HashMap is unsynchronized but can be made
thread-safe by a wrapper that performs appropriate locking.

Our initial experiment compares these collection classes with
lock elision enabled to the original implementations under a simple
read-only workload in which, after initialization, all worker threads
repeatedly look up objects that are known to be in the mapping.
We measure the total number of lookups achieved per second. This
experiment is contrived to test our prototype in a simple case where
it should clearly perform well. Nonetheless, it is not uncommon for
these collections to be used in a read-only or read-mostly fashion,
so the results even of this simple test may be relevant to some
meaningful workloads.

Our intuition is that, if we are successful in executing lookups
using best-effort HTM, our prototype implementation should ex-
hibit significant improvement over the original synchronized ver-
sions in this experiment because concurrent lookups can execute
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Figure 6. Performance experiments for Java hash table with lock
elision

in parallel and there is no need to modify any data or metadata. In
contrast, the original versions serialize all operations and require
each operation to modify the lock even though lookup operations
do not modify the collection.

At first we did not achieve the results we expected: all hardware
transactions failed, so each operation just wasted time before falling
back on the original locking mechanism. Our investigation into the
reasons for this yielded two causes.

The first cause was a simulator bug: thetcc (trap on condition
code) instruction caused an exception regardless of whether the
condition held; we use this instruction to cause the transaction to
fail in case the lock is held by another thread, so transactions were
failing even when it was not held. Tracing this bug motivated us to
extend the simulator with a special breakpoint so that we can dump
the registers during transactional execution. This proved to be a
valuable debugging tool. The ability to provide greater visibility
into transactional execution than will be available with the real
Rock hardware illustrates the value of ATMTP even after Rock is
available.

The second source of failure turned out to be a repeat of the
experience reported in Section 3.4:HashTable uses thesdivx in-
struction to compute the bucket index, thereby failing all transac-
tions. Working around this problem required a simple change to the
HashTable code, in which we compute the bucket index before
acquiring theHashTable lock. This way, when we use a hardware
transaction to elide the lock, thesdivx instruction is not executed
inside the transaction. Note that it is necessary in this case to check
inside the critical section that the table size is the same value as was
read before, otherwise the computed bucket index may be incorrect.

The HashMap did not require this change because it ensures
that the number of buckets is a power of two and uses bit shifting
and masking operators rather thansdivx to compute the bucket
index. Therefore,HashMap is another example in which unmodified
existing code is amenable to lock elision.

With these issues addressed, we achieved the results shown in
Figure 6. For both of the unmodified collections, throughputde-
creases with additional threads. This is because traditional syn-
chronized methods not only serialize the operations, but also gener-
ate coherence traffic because each operation must acquire exclusive
ownership of the lock metadata. In contrast, with lock elision en-
abled, both collections exhibit good scalability, as we had hoped,
resulting in substantially improved throughput relative to the orig-
inal synchronized methods as thread count increases. (These two
lines are difficult to distinguish in the graph because they almost
exactly overlap throughout the range.) This establishes that at least
for simple read-only operations, lock elision offers the potential for
significantly improved performance and scalability for unmodified
code. Our next step is to experiment with operations that modify

the collection during the experiment, and other more diverse work-
loads.

4. Concluding remarks
Sun’s forthcoming Rock processor will support best-effort hard-
ware transactional memory (HTM). Our Adaptive Transactional
Memory Test Platform (ATMTP) provides a platform on which we
and others can develop and test code that exploits this feature.

This paper describes our early work using ATMTP to explore
potential applications of Rock’s HTM feature, how its limitations
interact with target workloads, whether and how they can be over-
come in various situations, and what changes to future HTM fea-
tures might enable more widespread and more effective use of those
features. While our evaluation of these techniques is preliminary,
we have demonstrated our progress on a number of tools (libraries,
compilers, and simulators), which provide a rich environment for
experimenting with the use of Rock’s HTM feature.

Our early investigation has yielded some encouraging results,
giving us confidence that we will be able to exploit Rock’s HTM
feature to achieve significant performance and scalability improve-
ments in a variety of contexts. We have also encountered a number
of challenges and learned some lessons, which fall into the follow-
ing broad categories:

Exploiting HTM on Rock Many of the lessons learned translate
more or less directly to Rock:

• We sometimes need to restructure code slightly to avoid
instructions that fail transactions (such assdivx in our
hash map example);

• We often need to avoid nested function calls; this is some-
times as simple as inlining, but it sometimes requires more
significant code restructuring (such as replacing our recur-
sive red-black tree with an iterative one);

• The cps register provides valuable feedback for making
intelligent decisions as to when/whether to retry; and

• Nontrivial engineering is required to avoid repeated trans-
action failures due to TLB misses.

Simulation methodology Other lessons and challenges are more
related to our use of ATMTP:

• Deterministic simulation aids debugging, and the simulator
gives more visibility into reasons for transaction failure
than Rock will; for these reasons, we expect ATMTP to
continue to be a valuable tool even after we have Rock-
based systems.

• On the other hand, simulation speed limits how much we
can learn. For example, we expect that JIT compilation will
stabilize after a couple of seconds of real time, but it is
impractical for us to simulate for this long, preventing us
from easily exploring the best approaches for using HTM in
Java programs on Rock for now.

• Differences between Rock and the simulated system also
limit development and evaluation of the best techniques
for Rock. For example, we believe that dealing with ITLB
misses will be easier on Rock than ATMTP, suggesting it
is not worthwhile to address these problems yet. Similarly,
tuning various mechanisms will require more accurate mod-
els of various costs on Rock, or waiting for Rock.

An alert reader may have noticed that our discussion of the non-
blocking techniques discussed in Sections 3.2 and 3.3 did not ad-
dress the possibility of the simple transactions they use failing for-
ever, as is usually required for any technique that uses best-effort



HTM. While we have advocated best-effort HTM designs as a way
to make earlier implementation feasible, we have also stressed the
value of making some stronger guarantees for specific classes of
simple transactions. Such guarantees give substantial power to al-
gorithm designers, especially for nonblocking algorithms. We ex-
pect that Rock will provide a guarantee sufficient to support the
techniques discussed in Sections 3.2 and 3.3. We have not deter-
mined whether ATMTP provides such a guarantee, but in practice
such transactions do eventually succeed, which allows us to exper-
iment with mechanisms that do not provide a software alternative.
Continuing to demonstrate the power of these guarantees, as well
as helping to understand what guarantees suffice and how they can
be supported, is an important part of our ongoing work.

Finally, we will soon release ATMTP as open source, and it
will be integrated into the forthcoming GEMS 2.1 release from the
Multifacet group at the University of Wisconsin. Please check our
website [25] and theirs [29] for details and updates. Releasing our
simulator—along with some example code showing how to use the
Rock HTM instructions—will allow others to take advantage of our
work to conduct research of their own, either experimenting with
code intended for Rock, or modifying the simulator to experiment
with the impact of different design decisions on the effectiveness
of best-effort HTM.
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