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Summary 

This work presents a contribution to 3D vision. It investigates a geometric 
point matching method and its application to the following three vision 
tasks: object recognition, object digitizing and object inspection. 

The 3D vision of interest is characterized by an input of range images 
provided by 3D scanners which sense the real world objects and give 
direct access to the 3D object geometry. 

The objects processed by the 3D vision system are represented by 
simple geometric primitives in order to deal with objects of free-form 
shape. Considered representations are: a cloud of points, triangle meshes 
or textured triangle meshes. 

The main task of the 3D vision system is the matching of free-form 
surfaces performed by a geometric point matching algorithm. For this 
purpose, an iterative closest point (ICP) algorithm which matches 
surfaces represented by low-level primitives is applied. Several aspects of 
the ICP algorithm are investigated and analyzed. Different contributions 
extend the ICP algorithm in order to solve the specific problems 
encountered in the aimed applications. 

A first contribution improves the matching performance by 
integrating several surface features such as surface color, texture and 
surface orientation in the ICP algorithm. Furthermore, the ICP algorithm 
is accelerated by fast search routines and data reduction methods. 

Secondly, a special surface setup is defined in order to investigate the 
convergence behavior of the ICP algorithm for several free-form objects. 
A novel representation called SIC-map presents the convergence results 
in a comprehensive manner. The interpretation of the SIC-maps provides 
a key for the successful design of the vision applications. 
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Finally, the successful working of the extended ICP algorithm is 
demonstrated by its application to the following three vision tasks. 

The object recognition system finds the type and the pose of 3D 
objects placed randomly on a workspace. To do so, the ICP algorithm 
matches the sensed test object to all the models in the knowledge 
database. In order to obtain successful recognition, a setup is proposed 
which places the test and model surfaces at several well-defined poses 
from where the ICP algorithm is launched. The successful working of this 
application is demonstrated for the automatic update of a virtual reality 
robotics environment. 

The object digitizing application matches several views from an object 
and integrates them into a single model containing the entire object 
geometry and color information. Human perception provides rough 
surface registration and is followed by the precise registration performed 
by the ICP algorithm. The different surfaces do only partially overlap 
which implies a special adaptation of the ICP algorithm such as proposed 
in this work. 

The object inspection system uses the ICP algorithm to match sensed 
data with models obtained from digitizing or CAD tools. The matching 
results of the ICP algorithm provide a measure to inspect the data quality. 
An augmented reality interface superimposes the matching error to the 
measured data and permits appealing visual inspection. This system has 
been applied for micropart inspection and virtual world construction. 
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Résumé 

Ce travail présente une contribution à la vision 3D. Il étudie une méthode 
d'alignement géométrique de points de surfaces 3D et son application aux 
trois tâches suivantes: reconnaissance d'objets, numérisation d'objets et 
l'inspection d'objets. 

La vision 3D considérée se caractérise par des données d'entrée sous 
forme d'images de profondeur fournies par un scanner 3D qui donne 
l'accès direct à la géométrie 3D de l'objet. 

Les objets traités par le système de vision sont représentés par des 
primitives géométriques simples afin de pouvoir modéliser des objets de 
formes aléatoires. Les représentations considérées sont: des nuages de 
points, des maillages de triangle ou des maillages de triangles texturés. 

La tâche principale du système de vision 3D est d'aligner des surfaces 
de formes aléatoires. Elle est réalisée par un algorithme d'alignement 
géométrique de points 3D qui procède itérativement par choix des plus 
proches voisins (ICP) et s'applique à des surfaces aux primitives bas-
niveau. Plusieurs aspects de l'algorithme ICP sont étudiés et analysés. 
Différentes contributions étendent l'algorithme ICP afin de résoudre les 
problèmes spécifiques des applications visées. 

Une première contribution améliore la performance de l'alignement 
de l'algorithme ICP en intégrant plusieurs caractéristiques tels que la 
couleur, la texture et l'orientation de la surface. En outre l'algorithme ICP 
est accéléré par des méthodes rapides de recherche du voisin le plus 
proche et la réduction de données. 

Deuxièmement, une configuration spéciale pour positionner les 
surfaces est définie afin d'étudier le comportement de la convergence de 
l'algorithme ICP pour plusieurs objets de forme aléatoire. Une nouvelle 
représentation appelée carte SIC présente les résultats de convergence 
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d'une façon compréhensive. L'interprétation de la carte SIC fournit une 
clé pour une bonne conception d'applications de vision. 

Finalement, le bon fonctionnement de l'algorithme ICP étendu est 
démontré par son application aux trois tâches de vision suivantes. 

Le système de reconnaissance d'objet doit trouver le type et la pose 
des objets placés aléatoirement sur un espace de travail. Pour ce faire, 
l'algorithme ICP aligne l'objet à identifier avec tous les modèles de la base 
de données. Afin d'obtenir une reconnaissance rapide et correcte, on 
propose une configuration qui place la surface de test et le modèle à 
plusieurs positions bien définies d'où l'algorithme ICP est lancé. Le bon 
fonctionnement de cette application est démontré pour la mise à jour 
automatique d'un environnement virtuel de robotique. 

L'application de numérisation d'objet doit aligner plusieurs vues d'un 
objet et les intégrer dans un modèle commun contenant l'information 
entière de la géométrie et de la couleur de l'objet réel. La perception 
humaine est utilisée pour trouver une estimation de l'alignement des 
surfaces dans une première étape. L'alignement précis des surfaces est 
ensuite exécuté par l'algorithme ICP. Le fait que les différentes surfaces 
ne se superposent que partiellement implique une adaptation de 
l'algorithme ICP telle que proposée dans ce travail. 

Le système d'inspection d'objet emploie l'algorithme ICP pour aligner 
des objets mesurés avec des modèles obtenus par numérisation ou au 
moyen d'outils de DAO. Les résultats de l'alignement des points par 
l'algorithme ICP constituent une mesure de la qualité des objets. En 
superposant l'erreur d'alignement aux données mesurées, une interface 
de réalité augmenté permet leur inspection visuelle sous forme 
attrayante. Ce système a été appliqué pour l'inspection de micro-pièces et 
la construction de mondes virtuels. 



 

 

Zusammenfassung 

Diese Arbeit präsentiert einen Beitrag im Gebiet der 3D Bildverarbeitung. 
Sie untersucht eine Methode zur geometrischen Zuordnung von Punkten 
und ihre Anwendung auf die folgenden drei Aufgaben: Objekterkennung, 
Objektdigitalisierung und Objektinspektion. 

Das angewandte 3D Bildverarbeitungssystem basiert auf Bildern mit 
Tiefendaten aufgenommen mit einem 3D Scanner, was den direkten 
Zugriff auf die dreidimensionale Objektgeometrie ermöglicht. 

Die verarbeiteten Objekte werden mit einfachen geometrischen 
Elementen beschrieben, um auch Freiformflächen modellieren zu 
können. Folgende Oberflächenbeschreibungen werden in Betracht 
gezogen: Punktwolken, Dreiecknetze und texturierte Dreiecknetze. 

Die Hauptaufgabe des 3D Bildverarbeitungssystems besteht in der 
Ausrichtung von Freiformflächen, welche durch einen geometrischen 
Punkt-Zuordnungs-Algorithmus ausgeführt wird. Zu diesem Zweck wird 
ein iterativer Algorithmus angewendet, der die nächsten Punkte (ICP) 
einander zuordnet und die durch einfachste Elemente beschriebenen 
Oberflächen aneinander ausrichtet. Mehrere Aspekte des ICP-
Algorithmus werden untersucht und analysiert. Verschiedene Beiträge 
erweitern den ICP Algorithmus, um die spezifischen Probleme der 
anvisierten Anwendungen zu lösen. 

Ein erster Beitrag verbessert die Qualität der Ausrichtung durch das 
Einbeziehen verschiedener Eigenschaften wie Farbe, Textur und 
Oberflächenorientierung in den ICP-Algorithmus. Ausserdem wird der 
ICP-Algorithmus durch einen schnellen Suchalgorithmus und 
Datenreduktionen beschleunigt. 



Geometric point matching of free-form 3D objects 

 x 

Zweitens erlaubt die Definition einer speziellen Anordnung der 
Oberflächen, das Untersuchen des Konvergenzverhaltens des ICP-
Algorithmus für verschiedene Freiformflächen. Eine neuartige 
Darstellungsart genannt SIC-Karte präsentiert die Konvergenzresultate in 
einer übersichtlichen Art und Weise. Die Interpretation der SIC-Karten 
ermöglicht den erfolgreichen Entwurf der 
Bildverarbeitungsanwendungen. 

Schlussendlich erbringen die folgenden drei Anwendungen den 
Nachweis, dass der erweiterte ICP-Algorithmus erfolgreich funktioniert. 

Das Objekterkennungssystem bestimmt den Typ und die Lage von 
dreidimensionalen Objekten, welche zufällig auf einen Arbeitsplatz gelegt 
werden. Um diese Aufgabe zu erfüllen, vergleicht der ICP-Algorithmus 
das gemessene Testobjekt mit allen Modellen aus der Wissensdatenbank. 
Um eine erfolgreiche Erkennung zu erhalten, werden die Test- und 
Modeloberflächen in verschiedenen Lagen speziell angeordnet und für 
jede dieser Konfigurationen der ICP-Algorithmus gestartet. Das 
erfolgreiche Funktionieren dieser Anwendung ist nachgewiesen anhand 
der automatischen Aktualisierung einer Roboterumgebung in einer 
virtuellen Welt. 

In der Objektdigitalisierung werden verschiedene Objektansichten 
mit Hilfe des ICP-Algorithmus aneinander ausgerichtet und in ein 
einziges Model integriert. Dieses Model enthält nun die ganze Geometrie 
und Farbinformation des digitalisierten Objektes. Das menschliche 
Vorstellungsvermögen wird zu Hilfe genommen, um eine grobe 
Ausrichtung der Oberflächen abzuschätzen. Darauf folgt die präzise 
Ausrichtung, ausgeführt durch den ICP-Algorithmus. Die verschiedenen 
Flächen überlappen nur teilweise, was eine spezielle Anpassung des ICP-
Algorithmus nötig macht, wie in dieser Arbeit beschrieben. 

Das Objektinspektionsystem benützt den ICP-Algorithmus, um 
gemessene Daten an digitalisierten oder aus CAD-Programmen 
stammenden Modellen auszurichten. Die Resultate der Ausrichtung, 
durchgeführt durch den ICP-Algorithmus, stellen ein Mass zur 
Inspektion der Datenqualität zur Verfügung. Eine spezielle Schnittstelle 
visualisiert das Resultat der Inspektion nach dem Prinzip der 
angereicherten Realität, indem der Fehler der Ausrichtung über die 
gemessenen Daten gelegt wird. Dieses System wurde für die Inspektion 
von Mikroteilen und die Konstruktion von virtuellen Welten verwendet. 
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Chapter 1 

Introduction 

1.1 Motivation 

Vision systems are of interest to industry since they allow fast and non-
contact inspection. Previously, the processing of the image data needed 
expensive and specialized hardware. New computer generations permit 
the handling of the image processing on standard personal computers 
and to lower equipment costs significantly. Especially in 2D vision 
systems which are widely used in industry for implementing machine 
vision tasks. 

3D vision is just emerging. With the availability of new and cheaper 
3D scanners, 3D vision is becoming more accessible. This allows object 
recognition and inspection tasks to extend to 3D where they had 
previously only been done in 2D. Complete new systems integrating 
virtual reality environments are being developed for applications such as 
telemanipulation and multimedia. 

1.2 Goals and applications 

This work presents a contribution to 3D vision. It investigates a geometric 
matching method and its application to the following three vision tasks: 
object recognition, object digitizing and object inspection. 
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Object recognition: The type and pose of different objects placed on a 
working table have to be identified. Here, the term 
"pose" includes the object position and 
orientation. For every object, a model 
representation is stored in a database. The 
recognized objects are manipulated by a robot. 
Such a vision system can help to automate an 
assembly task. 

Object digitizing: An object surface is sensed from different point of 
views. The aim is to assemble the different 
acquisitions in order to reconstruct a model of the 
complete object surface. Object digitizing is 
effectively used in reverse engineering 
applications to build CAD models from hand-
made or historical objects where no digital data is 
available. 

Object inspection: The surface geometry of a manufactured object is 
acquired and compared to a CAD model. The 
surface inspection allows the qualification of the 
production process. 

All applications encounter a problem where two surfaces have to be 
matched. The following demands have to be observed: 

Precise matching: The surfaces have to be matched with high 
accuracy to ensure the correct working of all 
applications. 

Free-form objects: The processing of objects of arbitrary shape is 
necessary. 

Access to geometry: Direct access to the surface geometry is a 
prerequisite for successful object inspection or 
digitizing. 

This work presents a surface matching method which is used for all three 
applications and which fulfills the above demands. 

Next, a short overview motivates the use of free-form surfaces and 
their shape acquisition. 
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Free-form objects 

Modern industrial design, especially multimedia applications, deal a lot 
with smooth sculpted objects. The developed vision algorithms are 
designed especially to process free-form shapes that are much more 
complex than simple polyhedral objects (see Figure 1.1 for some 
examples). 

Shape acquisition 

3D scanners are well-suited for the acquisition of objects of complex 
shape since they can measure many surface points at high speed. In this 
work, optical 3D scanners are used to measure object surface geometry 
without contact. The acquired data is represented by absolute 3D 
coordinates. This gives direct access to the surface geometry. See [JIA] 
for an introduction to the processing of 3D scanner data. 

1.3 The matching problem 

The problem of matching two surfaces appears in all focused 
applications. Every task has to establish correspondences between two 
surfaces in order to register them. In this context, surface registration 
refers to the alignment of two surfaces. For example, the object 
recognition task matches a sensed real world scene and a set of model 
shapes stored in a model database on a computer. 

Figure 1.1 illustrates the matching problem encountered in object 
recognition for some typical objects used in this work. 
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matching

 

Figure 1.1 Illustration of matching problem 

There are different levels of correspondence establishment. For some 
tasks, only the type of the object present in the scene has to be found. 
Other applications need to know the object type and pose, as is the case 
for the applications examined in this work. 

Here, the term matching refers to type identification or shape 
localization or a combination of both of them. The matching establishes 
the correspondence of a sensed surface and a model surface database or 
two sensed surfaces. 

The implementation of a matching system depends on the surface 
representation. Here, three matching classes are distinguished. The two 
surfaces to be matched are referred to as test and model: 

Image matching: The test and the model are images containing for 
example intensity or depth information. Image 
correlation locates the model image in the test 
image. The result is the pose of the model in the 
2D space of the test image. 

Graph matching: The test data is segmented and labeled. The 
resulting abstract object representation is 
organized in a graph structure. Graph search 
methods compare the high-level test and model 
representations. Usually, only the object type is 
identified. 
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Geometric matching: The test and the model surface are represented by 
their geometry. The surfaces are aligned or 
registered by minimizing the measure of geometry 
disagreement. The resulting transformation 
corresponds to the pose of the matched surfaces in 
3D space. 

In this work, a geometric matching method working in 3D space is 
applied. It best fits the requirements of the aimed applications defined in 
Section 1.2. 

1.4 Structure of the report 

The following chapters are organized as follows: 
Chapter 2 discusses several aspects of free-form object surfaces. Their 

geometry is defined and their representation and acquisition are 
discussed. An optimal low-level surface representation is selected for this 
work. 

The geometric matching method chosen for this thesis is presented in 
Chapter 3. The basic working principle is explained and contributions 
which improve matching both in speed and quality are proposed. Special 
surface configurations are defined in order to measure the convergence 
behavior of the matching algorithm. 

The three chapters Chapter 4, Chapter 5 and Chapter 6 present the 
implementations of the geometric matching for the three applications 
mentioned above. Each presentation starts with an introduction, a 
comparison with other work and finishes with the results and a 
conclusion. Furthermore, these chapters emphasize the different 
implementation aspects, which adapt the geometric matching algorithm 
for the particular needs of each application. 

The last Chapter 7 concludes this work with a summary of the 
contributions of this work and a discussion of the limitations and of 
future work. 





 

 

Chapter 2 

Free-form objects in 3D vision 

The objects considered in this work are three-dimensional and of free-
form shape. This chapter starts with a definition of the term free-form. 
Then, follows a presentation of the two main approaches used to 
represent free-form objects in vision algorithms. Finally, the primitives 
which model free-form objects in this work are selected and the different 
principles with which free-form surfaces are acquired are discussed. 

2.1 Definition of the free-form term 

Since surfaces are what is seen by a vision sensor, the surface 
representations are important for computer vision. Therefore, the 
definition of the term "free-form" in this work is based on surface 
geometry. In addition, the terms free-form object or shape are used to tell 
that their surface is of free-form type. 

The geometric surface modeling problem was treated in an 
exhaustive manner by Besl in the late eighties [BESc] and [BESd]. A 
qualitative definition of free-form surfaces is given in [BESc] and is 
summarized here. Additional restrictions are added to the free-form 
definition of Besl in order to adapt it for the objects used in the 
applications implemented in this work. 
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Definition 

Some typical examples of free-form shapes are faces, sculptures and 
terrain as shown in Figure 2.1. Free-form objects are smooth, complex 
and their surfaces may be locally convex or concave. The objects 
considered in this work are solid and have no moving parts. A free-form 
surface is not limited to piecewise-planar, piecewise-quadric or 
piecewise-superquadric primitives. Having one point on the surface and 
heading in one direction, it is impossible to know how the surface 
geometry will evolve. However, surface normals are well-defined and 
continuous apart from isolated edges or vertices. 

 

Figure 2.1 Human face and sculpture sensed with a 3D scanner 

2.2 Surface representations 

In general, different tasks have different demands on the object 
representation. A qualitative shape representation, for example a 
structural representation of object faces, may be sufficient for object 
recognition. Nevertheless, tasks such as industrial inspection need 
accurate quantitative surface measurements. Therefore, geometric 
primitives that approximate the object's surface geometry are more 
appropriate. 

In the following, the classes of appearance-based and primitive-based 
approaches are presented and their suitability for the different tasks to be 
implemented is discussed. Appearance-based representations rely on a 
qualitative description of the object's surface whereas primitive-based 
approaches model the surface geometry quantitatively. 
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The following reflections are based on contributions of a recent vision 
workshop [HER]. 

2.2.1 Appearance-based representation 

Appearance-based representations consist of a set of several object views. 
A set of simple images showing the object under different view angles is 
already sufficient to build a model database. The object information 
stored in the model database is usually an abstraction of the image 
collection and may be of geometric or also photometric nature. 

Examples 

Dorai defines a shape index based on curvatures [DOR]. An object is 
sensed from different views by 3D scanner data. An object’s shape 
information is expressed by a shape spectrum, which is the histogram of 
all shape index values over the object's surface (see Figure 2.2). The set of 
shape spectrums for all views of the object represents the whole object. 

Similarly, Besl proposes a crease angle histogram [BESa] to map a 
shape to a vector and Stein defines a "splash" representation which maps 
the orientations of the local normal vectors of a surface region to an index 
[STE]. 

 

Figure 2.2 Appearance-based representation of a sculpture [DOR] 
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Suitability 

Appearance-based methods do not contain an explicit description of 
object geometry and can therefore be applied to any object shape. 
However, they usually need a large number of views to represent the 
whole object shape. This results in a complex search when comparing a 
test view with the entire model database. An effective indexing scheme 
and the use of simple dissimilarity measures can reduce this search time. 

Even if appearance-based approaches are well-suited to represent 
free-form objects, they are not appropriate for the applications aimed at 
in this work which need precise registration and direct access to surface 
geometry (see Section 1.2). 

2.2.2 Primitive-based representation 

Primitive-based approaches model an object surface by geometric 
primitives. Usually a single primitive, even when it has a large number of 
parameters, cannot capture the whole shape of a free-form object. 
Therefore, objects are in general decomposed into several parts, which 
are modeled separately by primitives. 

The two main problems of primitive-based approaches are the 
selection of an appropriate primitive and the segmentation i.e. 
decomposition of the object shape into regions described by these 
primitives. 

Primitive classes 

Classical vision has focussed on particular classes of constrained 
geometric shapes as for example polyhedrons modeled by polygons (see 
[AMA] and [GIN] for some work done at our lab). Other examples for 
low-level primitives are set of points, lines or planar patches. 

High-level primitives have more parameters and have been used in 
several object recognition systems [BESd]. Spheres, ellipsoids and 
cylinders can be described by second-degree algebraic surfaces called 
quadrics. Superquadrics define even more complex shapes such as tori. 
General cylinders use precise generative rules instead of numerical 
parameters for object representation. They move a 2D cross-section along 
a line while several parameters such as scale or rotation may change. 
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Such representations have been used to model human bodies in virtual 
reality applications. 

Parametric primitives approach a surface by polynoms or B-Splines 
attached to a set of control points. For example, NURBS are parametric 
surfaces defined over a rectangular parameter domain, which again may 
be trimmed by some curve in order to represent discontinuities. In 
industry, the IGES (Initial Graphics Exchange Specification) standard 
uses NURBS (Non-Uniform Rational B-Splines) for free-form surface 
representation [BESc]. 

 

Figure 2.3 Example of a NURBS surface 

Surface segmentation 

Surface segmentation consists of the decomposition of an object surface 
into regions that can be precisely modeled by a given primitive. The 
decomposition of free-form surfaces is a difficult process and often does 
not lead to a stable representation. Especially, if there are several types of 
primitives available it is not obvious which one to select since this will 
again influence the decomposition (a chicken-and-egg problem, so to 
speak). 

Promising 3D data segmentation techniques are often curvature-
sign-based. The curvature signs are defined with respect to certain 
thresholds. Li shows that these techniques are not very reliable for free-
form shapes especially if sensor noise is present in the data [LI]. It is 
difficult to define the curvature thresholds in advance. Usually, a 



Geometric point matching of free-form 3D objects 

 12 

successful segmentation is only achieved after several trials and visual 
inspection of the resulting regions. 

Figure 2.4 shows the segmentation results for a free-form object (a 
toy duck) scanned from two different view points. The surface geometry 
is represented by range images where the pixel intensity corresponds to 
the distance between the corresponding object point and the camera. The 
object surface is segmented into regions using a simple continuity 
criterion based on second order derivatives. The resulting segmentation 
is not stable and suggests the difficulty of the task. 

 

Figure 2.4 Surface segmentation with a surface continuity criterion 

High-level versus low-level primitives 

Because high-level primitives are controlled by a large number of 
parameters, they permit to model even complex surfaces with few 
primitives. However, it is difficult to obtain a stable and meaningful 
surface segmentation for high-level primitives. 

Low-level primitives usually cover a small area and quite a large 
number of them is needed to represent a surface. On the other hand, 
surface segmentation is simpler. This segmentation does not have to be 
very stable since it is in general followed by an abstraction process, which 
groups different low-level primitives into a high-level representation. 
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Suitability 

Primitive-based approaches model the surface geometry precisely and are 
therefore well suited for the tasks to be implemented in this work 
(compare Section 1.2). 

2.3 Advantages of low-level primitives 

Representation qualities 

The low-level primitives considered in this work are points and triangles. 
The use of triangles, especially, has several advantages compared to high-
level primitives as shown exhaustively in [BESa]. They are cited here: 

– A cloud of points or a triangle mesh can both be obtained directly 
from the data measured by a 3D scanner as shown later in 
Section 2.4. 

– If the object surface is sufficiently densely sampled, points or 
triangles can represent any shape. 

– The surface segmentation into such primitives becomes superfluous. 

On the other hand, the number of primitives gets very large since these 
low-level primitives cover only a small surface area. Efficient data 
structures and fast computers with much memory are needed to handle 
the large amount of primitives. Yet, these problems have become less 
important during recent years since memory prices have dropped 
drastically and workstation power is available on personal computer now. 

Matching qualities 

Low-level primitives are effective to compute quantitative shape 
similarity since they precisely represent free-form surface and the 
definition of a primitive dissimilarity can be a simple Euclidean distance. 



Geometric point matching of free-form 3D objects 

 14 

Data exchange, display and reusability 

The data exchange between different modules of a vision system is 
important to ensure effective work progress [BESa]. If there is a need for 
data converters, a digitized model built by a digitizing module may not be 
easily used in an object recognition or inspection module and needs 
further processing for on-screen visualization. Low-level primitives are 
very easily interchangeable since they do not result from a data 
abstraction process. 

Graphic display processors can directly import triangle meshes or 
point clouds for display since they use the same primitives to calculate 
the image rendering. 

Most CAD applications have converters to export models with a 
surface triangulated at different levels of detail [BESa]. This allows to 
integrate CAD data directly into the vision algorithms developed in this 
work. 

2.4 Shape acquisition 

Next follows a description of the most common optical 3D scanner 
principles and in more details the working principles of the 3D scanners 
used for the acquisitions done for this work. Different surface 
representations such as could of point, triangle mesh and textured 
triangle mesh are derived from the scanner data. 

2.4.1 Working principles of optical 3D scanners 

During the last few years optical 3D scanners have made substantial 
progress and several models have been commercialized [SCHa]. Several 
vision techniques exist to sense 3D object shapes without the need to 
make contact with the sample. Usually, the sensed 3D information 
referred to as depth corresponds to the set of vectors linking the sensor 
and the visible points on the object surface. Most of these systems can be 
classified according to one of the following techniques: 

Stereo vision: A calibrated camera pair observes the sample. 
Subparts of both images are brought into 
correspondence and the depth is calculated by 
triangulation. 
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Active triangulation: Light spots or lines are projected on the sample 
and observed through a calibrated camera under a 
different view angle. The projected light is 
detected in the camera image and the depth is 
calculated by triangulation. 

Focus/defocus: Depth from focus is calculated from the lens 
configuration corresponding to the best object 
focus. Depth from defocus is obtained from the 
optical camera and lenses parameters combined 
with an image blur measure. 

Time of flight: A laser beam is pointed at the object and depth is 
obtained from time of flight or from phase shift 
measurements. 

The 3D scanners used in this work belong to the class of active 
triangulation scanners and are described in more detail below. 

Laser line triangulation 

A laser beam is directed through a cylindrical lens, which then emits a 
sheet of light. A CCD camera observes the line, which results from the 
intersection of the sheet of light with the object surface. The vertical offset 
of the line in the camera image is calculated. The calibrated laser and 
camera configuration allow the determination of the depth information 
using triangulation methods. The use of coherent laser light and a 
corresponding camera filter makes these 3D scanners low sensitive to 
ambient illumination. The resulting information only represents a scene 
profile and some scanning like mechanical translation of the sensor is 
necessary to acquire a complete surface. 

2D stripe projectors 

This method is an extension of the previous laser line method to several 
sheets of light. This scanner works on the principle of space coding with a 
projected stripe pattern and triangulation. Here, a sequence of two 
dimensional stripe patterns is projected onto the sample. The different 
light sheets have a unique binary code defined by the 0 or 1 values of the 
corresponding column in the projected images. The light sheets are 
identified in the camera image by detecting sequentially over all 
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projections the binary code for each sheet (see Figure 2.5). This allows the 
direct acquisition of a complete scene view without the need to move the 
scanner. The 3D coordinates of a scene point are calculated using the 
identified sheet code and its camera image coordinates. The depth 
resolution of the installation at our laboratory is about 0.5 mm for a 
measurement space of 200 mm diameter (resulting in a precision of 
about 1:400). 
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Figure 2.5 Working principle of a space coding 3D scanner 

2.4.2 3D scanner output 

Range image 

The geometric data of a whole scene measured by a 3D scanner is usually 
organized in a 2D array called a range image. The pixel intensity in a 
range image corresponds to the depth information, for example the z 
coordinate of a surface point (see Figure 2.6). Also the x and y 
coordinates may be stored in images. The three images build a stack 
where the surface geometry is available in a sensor-centered coordinate 
system for every pixel:       p i , j( ) = x i, j( ), y i, j( ), z i , j( )( ). 
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Colored range image 

Some scanners are able to acquire color or intensity information together 
with the 3D measurements because they employ white light to illuminate 
the object space. The depth (x, y, z) and color (red, green, blue) 
information is registered and available for every pixel since both 
informations are extracted from the same camera image. The 
incorporation of the color feature allows the extension of the information 
available for every pixel in the image stack to 

      p i , j( ) = x i, j( ), y i, j( ), z i , j( ),r i, j( ), g i, j( ),b i, j( )( ), (2.1) 

which represents a colored range image. Figure 2.6 shows the output of a 
3D scanner from a sensed toy rabbit. 

    z i, j( )   r i, j( ), g i, j( ),b i, j( )

 

Figure 2.6 Range and color image of the 3D scanner output 

Intrinsic color 

When shapes are illuminated from different view points the color of 
corresponding points is not necessarily invariant. What surface rendering 
and matching tools need is the intrinsic surface color. 

One method to obtain the intrinsic color is to use a reflection model. 
Already a simple lambertian model is useful if there is only one light 
source involved in the scanning process. Since the 3D scanner gives 
access to the object geometry, the direction of light incidence is known at 
every surface point. Assuming a diffuse object surface the sensed color   c s  
can be corrected as follows to obtain the intrinsic color   c i : 
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c i =

c s

cos θ( )
 with c = r, g, b( ) (2.2) 

where θ is the incidence angle formed by the local surface normal vector 
and the direction vector of the light source. More complex illumination 
models are proposed in [GODb]. 

Although this method produces quite good results, experiments at 
our laboratory showed that better results are obtained if the color 
acquisition is decoupled from the 3D scanning. A color image is acquired 
in a separate step where an ambient light source uniformly illuminates 
the object. 

Range image properties 

The vector p of (2.1) is filled with a special value called NIL when the 3D 
scanner could not calculate a reliable 3D measurement. This happens for 
example, when a point on the object surface is not illuminated. Such 
invalid pixels are drawn in black in range images. 

Since the range image is a perspective projection of the 3D scene onto 
an image plane, points which are next to one another in the range image 
are not necessarily neighbors on the object surface as illustrated by 
Figure 2.7. 

However, points that are next on the object surface are still neighbors 
in the image space after perspective projection. 

visible surface
hidden surface
surface point

surface discontinuity3D scanner 
view axis

surface orientation

range image plane  

Figure 2.7 Surface discontinuity in a range image 

These three properties have to be considered for the range image 
triangulation presented in the next section. 
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2.5 Surface representation 

Points and triangles have been selected to represent free-form surfaces. 
This section presents methods how to extract such representations from 
the range image. 

Several surface points build a cloud of points which is a set of feature 
vectors containing the Cartesian coordinates and possibly the color vector 
of a surface point. 

A triangle mesh interconnects the surface points with non-
overlapping triangles covering the whole surface. It is defined by a list of 
vertices and by a list of 3-tuples containing the coordinate indices of the 
triangle vertices. The color vectors may be assigned to each vertex or each 
triangle face and are stored in a separate list. 

A textured triangle mesh differs from a triangle mesh in the sense 
that the color is stored in an image. Every triangle vertex obtains a 
pointer to the corresponding image pixel. 

2.5.1 Cloud of points 

This simple representation is directly obtained from the range image. The 
point vectors corresponds to the pixel information (2.1) of the image 
stack. Only pixels which are not NIL are considered for the cloud of 
points. 

2.5.2 Triangle mesh 

A cloud of points representing an object surface is inefficient for several 
applications since it is a discrete surface representation. Triangulated 
surfaces are preferable for the object modeling used for realistic object 
rendering, multimedia and reverse engineering applications. 

The step from a cloud of measured surface points to a triangle mesh 
needs in general sophisticated triangulation methods, which are 
expensive in terms of computation time and memory storage [SCHb]. 
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The fact that most 3D scanners provide the measurements in a regular 
grid, namely the range image, makes the triangulation of the surface 
become straightforward as proposed by [RUT]. Observing the discussed 
range image properties, a triangulated surface is obtained as follows. 

Range image triangulation 

The range image is explored from the upper left to the lower right corner 
and a local triangulation is performed for every pixel and its three 
neighbors "east", "south" and "south-east". A local triangulation 
algorithm creates two triangles covering the square grid mesh formed by 
the current pixel and the three pixels with column and row indices 
increased by one. If the four points represent valid 3D data (    p ≠ NIL ) 
two possible ways exist to triangulate the square depending on the 
diagonal which is selected. Following the principle of the Delaunay 
triangulation, the shortest diagonal is selected which in turn also creates 
triangles with a maximal size of the smallest angle. This results in a 
smooth surface approximation since there is a minimal number of 
triangles with long edges. If one of the four points is not valid then one 
triangle is constructed with the remaining three points and no triangle is 
built at all if more than one point is missing (see Figure 2.8). 

i, j i, j
+1

i+1, 
j

i+1, 
j+1

valid pixel invalid pixel

E

SES

 

Figure 2.8 Range image triangulation 

Range image filtering 

Note that for several applications, the full range image resolution is not 
necessary and a subsampling of the rows and columns by a factor r allows 
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the reduction of the number of points and the processing of the data 
faster. 

Furthermore, an additional step is necessary to ensure that occluded 
parts are not covered by triangles: the connection of triangles separated 
by a discontinuity step must be avoided [TUR] [RUT] (see Figure 2.7). 

First, triangles with edges larger than 4·s·r are rejected, where s is the 
sampling grid distance which is about 0.5 mm for the used 3D scanner 
and r the reduction factor introduced before. Secondly, triangles with an 
angle between the triangle normal vector and the sensor view axis 
exceeding 75° are also rejected. 

Figure 2.9 shows the results of the triangulation performed on a 
subregion of the range image shown in Figure 2.6. The different 
representations include a cloud of points, a triangle mesh and a colored 
triangle mesh. 

 

Figure 2.9 Cloud of points, triangle mesh and colored triangle mesh 

2.5.3 Textured triangle mesh 

For some applications such as multimedia, which usually exchange object 
data over a network with a limited transfer bandwidth, the full geometric 
shape resolution is not necessary. As much as possible points are 
discarded in order to keep the object model size small. 
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Surface point reduction methods successively reduce the number of 
points representing a shape thus conserving the geometry up to a certain 
error [CHE] [GAR] [SOUa]. Such algorithms preserve the surface 
geometry details but color details get lost. For example, the details of the 
eye of the rabbit in Figure 2.9 are lost and the color transitions are 
blurred. 

Texture image mapping provides a solution to this problem. Instead 
of assigning the color information only to the triangle vertices, a color 
image of the object surface is applied onto the triangle faces. The display 
of texture mapped objects is fast since it is implemented in the hardware 
on modern graphics display cards. 

Texture mapping functions need to know the corresponding 
coordinates (i, j) in the texture image for every 3D data point (x, y, z) in 
order to apply the color image onto the surface geometry. The 3D scanner 
used for this work acquires a color image registered with the geometric 
information (see Section 2.4.1). This allows it to easily determine the 
corresponding coordinates in the color image since pixels correspond 
with the pixel in the range image containing the 3D information. 

The color information is now separated from the geometric data and 
stored in a color image. Images can be compressed very efficiently using 
algorithms with loss as JPEG. Practical experiments showed gains in 
model file size of up to a factor of ten for a compressed textured triangle 
mesh compared to a densely sampled and colored triangle mesh having 
both the same appearance. The texture images allows the detailed color 
information of an object to be stored. Figure 2.10 shows how a sampled 
object surface can be augmented by texture mapping of the color image. 
Note that the small stripes on the arm of the bear are present in the 
textured triangle mesh. 

(x,y,z) (i,j)

 

Figure 2.10 Color texture image mapping 



 

 

Chapter 3 

Geometric point matching 

This chapter presents and analyzes the surface matching algorithm 
chosen for this work. Based on the discussions in the previous chapters, 
the selection of a geometric point matching algorithm is recommended. 

First, the theoretical aspects of the algorithm are explained. Then 
follow several contributions that enhance the matching algorithm. They 
provide a faster execution time, better matching precision and more 
reliable convergence. 

3.1 Motivation 

Geometric matching registers two surfaces with the help of their 
geometry. It calculates the transformation, which brings one surface into 
correspondence with the other. This allows precise object localization in 
3D and inspection of the surface geometry to be performed. 

In order to represent the free-form surfaces, low-level primitives are 
selected: a cloud of points or a triangle mesh are well-suited. 

The combination of geometric matching and low-level surface 
representations meets best the requirements for the focused applications. 
Geometric point matching combines both advantages and is chosen and 
implemented in this work. 
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3.2 Problem statement 

The geometric point matching problem can be defined as follows: Given 
two sets of 3D points representing two surfaces called P and X, find the 
rigid transformation as defined by the rotation R and the translation t, 
which minimizes the sum of the Euclidean square distances between the 
corresponding points of P and X. The sum of all square distances gives 
rise to the following surface matching error 

      
e(R , t) = Rp k + t( )− c(p k )

2

k
∑ ,  p k ∈ P  (3.1) 

which has to be minimized 

      
e = min

R , t
e R, t( ). (3.2) 

The function c associates with every point of P a corresponding point of 
X: 

    c : P → X . (3.3) 

It is called the correspondence function c. If it is known, the rigid 
transformation (R, t) which minimizes (3.2) can be calculated in a closed-
form (see Section 3.5). Practically, the function c is unknown because 
there is in general no available correspondence information between X 
and P. Corresponding points of different surface acquisitions are not 
labeled in the data obtained from a 3D scanner. Therefore, solving (3.2) 
for R and t is a complex minimization process since c is unknown. 

3.3 Iterative geometric matching 

Although it is difficult to find a direct solution for the geometric point 
matching problem, it may be solved by an iterative approach. The 
complex calculation of the rigid transformation (R, t), which solves (3.2), 
is decomposed into several steps that successively reduce the matching 
error. 

At each iteration, the correspondence function c is approximated by 
an estimated function     ̂ c . As the terms of (3.1) are now defined the optimal 
rigid transformation, which minimizes the matching error at the current 
iteration, can be calculated. 

The principal idea of the iterative approach is to use the value of R 
and t from the previous iteration step in order to build   ̂ c  at the current 
iteration. At every iteration i, a least-square method calculates the 
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optimal rigid transformation (    R (i) ,    t (i)) which minimizes the current 
matching error. The total transformation (R, t), which combines the 
results of the different iterations, is updated as follows:       R = R ( i)R  and 
      t = R (i)t + t (i) . 

This method reduces the complex geometric point matching error of 
(3.1) to a simpler one, defined below and minimized at every iteration 
step. 

      
e R (i) , t (i)( )= R (i) Rp k + t( )+ t (i)[ ]− ˆ c (p k )

k
∑

2
  (3.4) 

The correspondence function   ̂ c  has to be chosen such that the iterative 
geometric matching converges towards a minimum. The matching error e 
can be minimized by a closed-form solution presented in Section 3.5. 

3.3.1 History of iterative geometric point matching 

Several authors have proposed algorithms to solve the geometric point 
matching problem. Early work using heuristic methods was done by 
Potmesil [POT] in 1983. About ten years later several authors published 
independent work based on the same idea [BESb] [CHE] [CHA] [MEN]. 
All the publications present an iterative geometric point matching 
algorithm. During one iteration, point correspondences of two surfaces 
are established in order to estimate c and the rigid transformation, which 
minimizes the matching error of the corresponding points, is calculated. 
The approaches differ mainly in how the point correspondence, i.e. the 
function     ̂ c , is established. 

Chen and Medioni [CHE] calculate the corresponding point for a 
point from one surface by intersecting its surface normal with the second 
surface. Besl and McKay [BESb] minimize the Euclidean distance of a 
point from one surface to all the points from the second surface. The 
determination of the rigid transformation, which minimizes the distance 
between corresponding points, is done with a closed-form solution in 
[BESb] and with an iterative minimization in [CHE]. 

In [MEN] scanner data is matched with CAD models. Champleboux 
shows registration results of human face data [CHA]. 

In this work the approach of [BESb] has been chosen and extended. 
This iterative solution for the geometric point matching problem uses a 
closest point function for     ̂ c  as described in the next section. 
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3.3.2 Iterative closest point (ICP) matching 

The distance error of the closest points of P and X is minimal, when P and 
X are registered. Assume that the transformation (R, t) which registers P 
and X is known, then c can be estimated by the function     ̂ c  which 
associates every point of P with the point with the smallest Euclidean 
distance of X: 

      
ˆ c (p) = argmin

x∈X
(Rp + t) − x 2

. (3.5) 

The correspondence function   ̂ c  performs a closest point search for every 
point of P. It uses the square of the Euclidean distance in order to avoid 
the expensive square root computation. 

The minimization of the error in (3.1) is still difficult even when using 
    ̂ c  defined in (3.5), since     ̂ c  itself is an optimization problem of R and t. 
However, the iterative approach which minimizes (3.4) in combination 
with (3.5) leads to an iterative closest point matching which provides a 
solution for the geometric matching problem. 

ICP algorithm 

The iterative closest point (ICP) matching method can be formulated in a 
procedural description as follows: 

• input: Two sets of 3D data points P and X and the total 
transformation initialization  R = I  and   t = 0 . 

• output: Transformation (R, t), which registers P and X. 

• iteration i: 

1. Use the following coupling distance definition 

      d p , x( ) = p − x 2  (3.6) 

 to build the set       C
(i) ˜ p k ,y k( ) of the N closest point pairs, N being  

 
 
the number of points in P. The closest point   y k  is defined as follows 

      
y k = ˆ c ( ˜ p k ) = argmin

x ∈X
d ˜ p k ,x( ) with ˜ p k = Rp k + t . (3.7) 

2. Define the matching error of the couplings in    C
(i) ˜ p k ,y k( ) as a 

function of       R (i)  and       t (i)  
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e R (i) , t (i)( )= R ( i) ˜ p k + t (i)( )− y k

2

k =1

N

∑  (3.8) 

 and calculate the rigid transformation (    R (i) ,    t (i)) such that 

      
e(i) = min

R (i ) , t (i )
e R (i) , t (i)( ). (3.9) 

3. Let       R = R ( i)R  and       t = R (i)t + t (i) . 

4. Stop if the matching has converged to a minimum or if the maximal 
number of iterations is reached. 

Figure 3.1 shows the data flow graph of the iterative closest point 
matching together with an example of the matching of two L-shaped 
objects. 

matching  
error  

minimization

closest  
point  

search
terminate

y

  y k

   ̃ p k

      ̃ p k
    R , t   R

(i) , t (i)

 

Figure 3.1 Data flow of ICP algorithm 

The example in Figure 3.2 illustrates the different point sets P, X and 

    Y = y k{ } of the closest point search. 



Geometric point matching of free-form 3D objects 

 28 

 

Figure 3.2 Closest point couplings Y of the ICP algorithm 

3.3.3 Convergence of ICP algorithm 

This section proves the convergence of the ICP algorithm. At iteration i 
the closest point search establishes the couplings   C (i)  having an overall 
coupling error     d (i)  defined by 

      
d (i) = dk  with dk = ˜ p k − y k

2

k =1

N

∑ . (3.10) 

Note that the matching error e of (3.8) uses the same distance measure as 
the coupling distance d of (3.6). 

The matching error minimization calculates the optimal rigid 
transformation (      R (i) ,       t (i) ). This leads to the matching error     e(i)  with 
    e(i) ≤ d (i)  by definition of (3.9). If   e(i) > d (i)  would be true, then the 
identity transformation would yield a smaller error than the least-square 
minimization which is impossible. 

The next iteration of the ICP algorithm starts again with the closest 
point search generating the new couplings   C (i+ 1) . By definition of the 
closest point search, the new couplings   C (i+ 1)  are closer or equal to the 
previous ones in     C (i)  and therefore   d (i+1) ≤ e(i)  must be true. The least-
square minimization yields again   e(i +1) ≤ d (i+1) . 

Finally, the statement 

    0 ≤ e(i+1) ≤ d (i+1) ≤ e(i+1) ≤ d (i +1)  (3.11) 

is true. It ensures a non-increasing and bounded matching error. The ICP 
algorithm therefore converges monotonically to a (in general local) 
minimum. Its behavior is necessarily affected by a number of factors and 
some of them are investigated in Section 3.7. 
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3.3.4 Enhancements 

The following sections describe some of the contributions of this work. 
Methods to integrate several features which enhance the correspondence 
establishment function     ̂ c  are discussed in Section 3.4. The closed-form 
solution for the matching error minimization is presented in Section 3.5. 
Finally, different iteration termination criteria are proposed in 
Section 3.6. 

3.4 Closest point search 

The closest point search is the first step of the ICP algorithm. It 
establishes correspondences between two surfaces at every iteration. To 
every point of the surface P a closest point of the surface X is assigned. 
Different methods which improve the quality and the speed of the closest 
point search are discussed in this section. 

1) Section 3.4.1 discusses special matching cases where the surface P 
does not completely match X. 

2) The better the calculated closest points reflect the real 
correspondences, the faster the ICP algorithm will converge, since 
once the best point correspondences are found, the matching error 
will not change any more. As the geometric distance is sometimes not 
sufficient to establish good correspondences, Section 3.4.2 proposes 
the integration of further features into the closest point search such 
as surface orientation and color in order to better distinguish the 
different points. 

3) The closest point search is expensive in computation time. 
Section 3.4.3 presents methods to avoid an exhaustive search over all 
points of X and to accelerate the closest point search considerably. 

4) Until now the surfaces used in the ICP algorithm have been 
represented by a set of 3D points. Actually, any geometric primitive 
for which a closest point distance definition exists could be used. 
Section 3.4.5 shows how the point to triangle distance can be 
calculated in an efficient way and how color texture can be integrated 
into the closest point search. 



Geometric point matching of free-form 3D objects 

 30 

3.4.1 Surface dispositions for the closest point search 

Given two surfaces, the ICP algorithm behaves differently if the role of P 
and X is assigned to one or the other surface. The matching result will not 
be the same since the closest point couplings are different. The ICP 
algorithm is not symmetrical in this sense. Different surface dispositions 
and their impact on the ICP algorithm behavior are discussed here. 

If P is a subset of the points of X the coupling error of the correct 
matching is zero. However, usually the surface discretization of two 
surfaces differs and even when the surface P matches a subarea of the 
surface X the points do not coincide. Therefore, the error of the correct 
matching is small but not zero. 

A potential closest point in X must exist for every point in P else the 
correspondence estimate     ̂ c  of (3.5) does not apply. This property is 
satisfied for the case of the object recognition application where P 
represents a partial region of the surface X. 

The digitizing and inspection applications are different. Here, the 
surface P contains points, which do not match any point in X. For 
example, the object digitizing task matches surfaces representing object 
views that only partially overlap. Points in P which do not overlap X have 
therefore to be excluded from the error minimization. A method to solve 
this problem is presented in Section 3.5.3. 

Figure 3.3 visualizes the discussed cases for the different 
applications. The digitizing and inspection application differ in the size of 
the surface P. Both surfaces have about the same size in the digitizing 
application where P may represent a complete scene in the inspection 
task and is usually much larger than X which represents one object 
present in the scene. 

P
X X X

P
P

object recognition object digitizing object inspection

P = object view 
X = model

P = object view 
X = object view

P = scene view 
X = model  

Figure 3.3 Different surface dispositions for the closest point search 
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The association of P and X to the two matched surfaces is defined for the 
object recognition and inspection application as shown in Figure 3.3. In 
the object digitizing application, the roles of P and X are interchangeable 
since the surface setup is symmetric. 

3.4.2 Closest point features 

The closest point search of the standard ICP algorithm uses the square 
Euclidean distance of the Cartesian 3D coordinates as defined in (3.6) 
and called geometric feature in this work. This geometric distance is not 
always sufficient to obtain successful matching for the ICP algorithm. For 
example, the matching of objects like a ball or a cylinder is not defined 
since two views of such objects do not differ in shape and therefore no 
unique matching solution exists. The geometry of two surfaces can match 
but the coupled points may differ in color or orientation. 

Better correspondences are found if the surface representations 
contain more discriminative characteristics. Barequet and Sharir [BAR] 
assign a feature vector called footprint to every sensed point. Such a 
feature vector may contain data available from other sensors such as 
color or calculated features for example surface normal, curvature or 
multi dimensional characteristics such as spin images [JOHb]. 

Various criteria apply for the choice of additional closest point 
features: 

1) The quality of a feature depends not only on its potential to 
distinguish different surface parts, but also on the time needed to 
calculate the dissimilarity of two different features. 

2) Furthermore, the calculated or sensed characteristics should be 
insensitive to noise since corresponding points on different shapes 
should have the same feature values. 

3) Finally, the different feature distances have to be integrated in one 
total coupling distance. This requires a normalization of the different 
distance values since they do not necessarily have the same value 
range. The distance normalization is necessary to level out the 
influence of the different features in the total coupling distance. 

In this work, color and surface orientation information are integrated 
into the coupling distance d of (3.6). The following sections discuss the 
different distance definitions and their normalization. 
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Color 

Several authors report encouraging results for modified ICP algorithms 
with the color feature integrated into the closest point search [JOHa] 
[MAR] [GODb]. Surface color helps to avoid ambiguous cases where the 
surface geometry is not sufficient for a successful matching; this assumes 
however, that the object surface is of varying color. 

Colored range images are available for some 3D scanners where the 
surface geometry information is registered with the corresponding 
surface color for every point (see Section 2.4.2). 

In order to be able to define a simple distance measure, the color 
feature is represented by the three color components red, green and blue 
which build the feature vector c = (r,g,b). There is no need to use 
perceptually-based color systems since the coupling distance is an 
objective measure. The different color components r, g and b have the 
same range as for example from 0 to 255. The coupling distance between 
two colors on P and X is defined by the square Euclidean distance of the 
color vectors: 

      d c c p ,c x( )= c p − c x
2
 (3.12) 

Figure 3.4 shows the matching of two arcs with different colored surface 
points. Correct couplings are established if the color feature is integrated 
into the coupling distance. 

X

P

with color

X

P

without color  

Figure 3.4 Coupling improvement with color feature 

Surface orientation 

Several interesting features can be derived from the local surface 
geometry. Here follows a list presenting three possible features: 
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Normal vector: Most frequently used and not very sensitive to 
noise since its calculation implies only first-order 
derivatives [BAR] [FELa] [STOa]. 

Curvatures: Insensitive to rigid transformations and scale but 
need advanced data filtering to remove noise as 
second-order derivatives are implied in the 
calculation [GODa]. 

Spin image: Two-dimensional histogram of the polar 
coordinates of all surface points. The polar 
coordinates are measured relatively to a tangential 
plane going through a selected surface point. This 
feature allows good correspondences to be 
established. However, feature matching is a time 
expensive correlation operation [JOHb]. 

In this work, the surface normal vector has been chosen for the following 
reasons. It is low sensitive to noise and the difference between two 
normal vectors can be calculated easily. 

The surface orientation feature vector is defined by the surface 
normal coordinates n = (u,v,w). The coupling distance between two 
orientation vectors on P and X is therefore defined as follows: 

      d n n p, n x( )= n p − n x
2
 with n p = n x = 1 (3.13) 

Of course, two parameters as for example two angles are sufficient to 
define the orientation of a normal vector. Nevertheless, the Euclidean 
distance of two surface normal vectors of unit length reflect the difference 
in orientation better since there is no angle modulo problem. 

Figure 3.5 shows an example where the surface orientation feature 
helps to avoid a local minimum of the ICP matching. 
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without orientation with orientation

X P
X P

 

Figure 3.5 Coupling improvement with surface orientation feature 

Combination of multiple features 

Different approaches exist with which to consider several features in the 
closest point search of the ICP algorithm. 

Godin finds the closest point by separately minimizing every feature 
distance [GODa], [GODb]. First, the subset of the closest points which 
have a color distance below a certain threshold is built. Then, among 
these candidates the point with minimal geometric distance is chosen as 
the final closest point. This decoupled distance minimization introduces 
considerable effort since the closest point search is performed several 
times. 

In this work, a single distance measure, which combines all features, 
is selected. This allows the closest point search to be performed in one 
step. It permits also a simple integration of acceleration methods (see 
Section 3.4.3). 

The selected features are surface geometry g, normal n and color c. 
The different features are integrated into one feature vector. Previously p 
and x contained the Cartesian coordinates of the surface points which are 
now represented by the geometric feature vector g. The original point 
vectors of P and X are extended as follows: 

      

p = g p,n p,c p( )= x p, yp , z p,u p ,vp ,wp ,r p , gp ,bp( )
x = g x ,n x ,c x( ) = xx , yx , zx ,ux ,vx ,wx , rx , gx ,bx( )

 (3.14) 

This leads to a new formulation of the coupling distance in (3.6) as 
follows 
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d p , x( ) =
1

α g

d g g p, g x( )+
1

αn

dn n p ,n x( )+
1

α c

dc c p ,c x( ) with

d g g p ,g x( )= g p − g x
2
,  d n n p, n x( )= n p − n x

2

and  dc c p ,c x( )= c p − c x

2  

(3.15) 

where   α g ,   α n  and   α c  represent the weights used to normalize the 
different feature value ranges. 

Since the different features used for the total coupling distance do not 
have the same value range, there is a need to normalize the different 
feature distances before they are added. Otherwise, one of these features 
may dominate the other in the closest point distance. The selection of an 
appropriate size for the normalization factor is discussed in Section 5.7. 

The coupling distance d in (3.15) can be any combination of  d g ,  d n  
and   d c  but practically   d g  should always be included since the ICP 
algorithm is based on it (see (3.5)). Experiments in Section 5.8 show that 
the surface orientation or color alone are not discriminative enough to 
estimate the correspondence function c (see Section 5.8 for an exception). 

3.4.3 Fast closest point search 

The closest point search is the most expensive step in time of the ICP 
algorithm. Having N points in P and M points in X the resulting 
complexity is   N ⋅ M  since the coupling distance d is calculated for every 
point in P and for all the points in X. 

The magnitude of N and M is usually several thousand points; this is 
necessary in order to cover all details of a surface sufficiently. Therefore, 
the calculation of the closest point couplings includes millions of 
computer operations and may last some seconds even on a fast 
workstation. 

The following sections present methods to reduce the closest point 
calculation complexity of  N ⋅ M  for the worst case represented by the 
exhaustive search. 
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Subsampling of P and X 

A simple method to reduce the complexity of the closest point search is to 
subsample the points of P and X. A straightforward approach is to 
perform a linear subsampling of the point sets. 

More elaborate methods use adaptive subsampling which keeps few 
points in flat surface areas and more points when the geometry varies. 
Some authors use curvatures [GAR] or surface smoothness criteria [CHE] 
[SOUa] to select the points to be removed. These methods allow the 
significant compression of the number of points needed to represent a 
surface geometry. However, the distance between the remaining points 
may be locally large and the geometric point matching fails to establish 
reliable closest point couplings. 

To avoid this problem, a linear subsampling method which works in 
the range image space is proposed. The point reduction is performed 
using the range image structure as shown in Section 2.5. Points that are 
close in the range image are in general also close in 3D. Therefore, a 
subsampling of the range image ensures that the resulting points are 
distributed homogeneously over the object surface. The subsampling 
distance, which defines the mean distance between two surface points, is 
proportional to the range image subsampling factor and fixes an upper 
limit for the closest point distance when both surfaces are matched. 

However, details smaller than the subsampling distance get lost. 
Multi-resolution approaches such as those presented in Section 6.3 
provide an escape for this problem. 

Search structures 

The closest point search can be fast even for large data sets if special 
structures are used to organize the data. Different search structures such 
as trees, projections and clusters are summarized in [FRI]. Here, two 
methods are discussed: 

Distance maps Distance maps voxelize the feature space [DAN] 
and allow direct access to the closest points. They 
are however not suited for high dimensional 
vectors as defined in (3.14) since the memory 
requirement for the map explodes. 

kD tree A kD tree is a binary tree used to search data with 
k keys. Each non-terminal node represents a 



 Geometric point matching 

 37 

partitioning of the data set according to one key. 
The memory requirement for this structure grows 
linearly with the number of points and is 
independent of the number of used features. 

Since the aim of this work is to integrate several features in the closest 
point search, the kD tree algorithm is selected. Several authors proposed 
this structure to implement a fast closest point search for the ICP 
algorithm [BESb] [SIM] [ZHA]. A novel aspect of this work is the 
integration of three different features in a kD tree search. 

kD tree construction 

The construction of a kD tree is shown using the 2D data point set of 
Figure 3.6. Point A is selected as the root of the kD tree. Every level of the 
kD tree divides the feature space according to one of the feature space 
dimensions. Usually, the dimensions are used in a cyclic order. Therefore, 
point B is inserted as left child of A since it has a smaller x coordinate 
than A. B now divides the feature space in y direction. The construction 
continues iteratively by inserting one point after the other. At every node, 
the new point falls on either side of the hyperplane defined by the key 
used as discriminator at the current node. If the node has no child on the 
side where the new point falls, the new point is introduced as child. 
Figure 3.6 presents the final kD tree and the feature space partitioning for 
an example point set in 2D. 
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Figure 3.6 Example of a 2D tree construction 
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Since each non-terminal node represents a partitioning of the data set 
according to one key, it allows the exclusion of one side of the hyperplane 
separating the data space during the closest point search. Therefore, the 
better the kD tree is balanced the faster is the closest point search. 

The following factors influence the construction of the kD tree: the 
selection of the next point inserted in the kD tree and the key used to 
separate the feature space at the node where the point is inserted. Here, 
the partitioning key is obtained by cycling through the keys in order. An 
alternative is to select the partitioning key at each node in a more flexible 
way. An interesting choice is to use the key which at each node provides 
the largest spread of values and to use the median of the key as 
discriminator value [FRI]. This leads to a balanced binary tree and a 
theoretically optimal search performance. 

Closest point kD tree search 

Recursive algorithms that use the kD tree for the closest point search 
have been proposed in [FRI] and [ZHA]. The principal idea is to observe 
all points in the kD tree of X, which fall inside a k dimensional sphere 
centered on the point p for which the closest point is searched. 

At the initialization, the sphere radius   Dmax  is set to     Dinit  and the 
current node is the root of the kD tree. If the sphere overlaps the 
hyperplane defined by the partitioning key of the current node, the search 
algorithm is called recursively for both children, otherwise only for the 
one lying on the side of the point p. Furthermore, if the current node to 
point p distance is smaller than   Dmax ,   Dmax  is reduced to this distance 
and the intermediate closest point is set to the current node. The 
recursive search stops if a node has no children. Finally, the intermediate 
closest point corresponds to the correct closest point and   Dmax  is equal to 
the closest point distance. 

The following procedure formulates the above recursive search 
algorithm: 

• input: a point p, a kD tree T of a point set X, an 
intermediate closest point   y = root  and 

    Dmax = D init  

• output: the closest point  y  and the corresponding distance 

    Dmax  

• procedure:  search(node) 
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 if(node == NIL) return; 

 dim = get_partitioning_key(node); 

       ddim = p[dim ] − X [node ][dim ]; 

 if(    ddim < Dmax ) then 

   y  = X[node],    Dmax = d p , X [node ]( ); 

 if(      p [dim ] − Dmax < X [node ][dim ]) then 

  search(leftchild(node)); 

 if(      p [dim ] + Dmax ≥ X [node ][dim ]) then 

  search(rightchild(node)); 

The expected search time complexity for the above routine is of O(log(M)) 
with M the number of points in X [FRI]. The worst case complexity is of 

    O(M 2 /3 )  [ZHA]. 

3.4.4 kD tree search performance 

In order to assess the performance of the recursive search routine using a 
kD tree, the following experiment is performed. A closest point search is 
done for 7000 points of a surface P and a varying number of points 
representing a second surface X. The calculation is performed on a SGI 
Indigo2 R10000 workstation and the results are shown in Figure 3.7. 
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Figure 3.7 Search time using a kD tree 
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The obtained results show that the kD tree provides as expected a 
significant reduction of the computation time of the closest point search 
compared to the exhaustive search. 

Performance factors 

Different parameters allow further improvement to the performance of 
the recursive search routine. First, the construction of the kD tree is of 
major importance. The more balanced the kD tree is, the faster the closest 
point search is. 

The estimate of the size of   Dinit  is a second important factor. The 
smaller     Dinit  the faster the recursive search since fewer branches are 
inspected. In a general case   Dinit  is set to infinity which is not very 
efficient. Section 5.6.1 shows that a priori knowledge allows the setting of 

    Dinit  to a smaller upper bound. 
Furthermore, the closest point of the previous search done for       p k−1  

can be used to estimate     Dinit  for the next closest point search of     p k . Since 
most 3D scanners store the data points in the scanning order, consecutive 
points are close in 3D space and are likely to have close closest points. 
This method corresponds to a spatial closest point cache. A temporal 
closest point cache where the closest point of the previous iteration is 
used to estimate     Dinit  is proposed in [SIM]. 

Limitations 

The closest point search is most efficient if the data of P is inside the 
volume spanned by the data of X for which the kD tree is constructed. If 
the two shapes are far apart, which may be the case for the first iterations 
of the geometric point matching, the search time increases. This fact is 
measured in the following experiment. The P data is successively moved 
away from the X data and a closest point search is performed for every 
configuration. The results are presented in Figure 3.8. 
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Figure 3.8 Limits of kD tree search routine 

As soon as the two shapes do not overlap any more which is the case for a 
translation of more than 20 mm for this object, the performance of the 
recursive search routine degrades. This increase of the search time at 
larger distances is explained by the fact that all coupling distances are of 
similar length. The discrimination power of single keys falls short of 
separate points with similar Euclidean distances. 

A solution to limit this problem is to use the scan order of the points 
in P as proposed above using the closest point found in the previous 
search to estimate the next  Dinit . 

Note however that this unfavorable case appears very seldom in the 
ICP algorithm because a possible large distance disappears after the first 
iteration. Then, the surfaces P and X overlap and the kD tree can work 
optimally. 

3.4.5 Closest point on a continuous surface 

So far, the surfaces P and X are represented by sets of points, which result 
from a discretization of the object surface. To insure precise registration 
dense surface sampling is needed since the sampling grids of different 
acquisitions do not necessarily correspond and the closest points do not 
necessarily overlap. Even after several iterations, a matching error 
remains in the order of the sampling grid distance. 
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This final error is much smaller (usually in the order of the scanner 
resolution) if the object surface is represented continuously by two-
dimensional primitives (see Figure 3.9). Such primitives cover the whole 
surface area. 

X

P

X

P
point coupling surface  coupling  

Figure 3.9 Smaller matching error with continuous surface coupling 

In fact, the surface X in the ICP algorithm can be of any representation 
and the algorithm remains valid as long as a point to primitive distance 
definition exists to replace (3.6) in the closest point search [BESb]. 

Section 2.3 motivates the selection of triangle meshes to represent 
free-form surfaces. The following sections present methods to calculate 
efficiently the distance from a point to a triangle. The closest point search 
calculates this distance for a point of P for every triangle of X and selects 
the triangle of X with the smallest distance. A method based on the kD 
tree is presented to accelerate the calculation of the distance from a point 
to a triangle mesh. 

Point to triangle distance 

The distance of a point p to a triangle    t x = x 1,x 2, x 3{ } can be defined in 
an implicit form as follows: 

      

d p , t x( )= min
a ,b

p − x 1 + a x 2 − x 1( )+ b x 3 − x 1( )( ) 2

with a ≥ 0 ∩ b ≥ 0 ∩ a + b ≤ 1

 (3.16) 

This distance definition replaces the definition (3.6) in the search for the 
closest point y performed according to (3.7). 

Since there is not a direct solution to evaluate the distance of (3.16), 
the minimization over the factors a and b is decomposed into three steps. 
Actually, the evaluation of (3.16) corresponds to the search for the point x 
on the triangle     t x  which is closest to p. The point x can be inside the 
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triangle, on a triangle edge or on one of the triangle vertices. These three 
cases are checked as follows: 

1) If the projection     p t  of p onto the plane defined by the triangle 
vertices is inside the triangle, then x =   p t , else continue: 

2) If one of the projections   p e  of p on one of the triangle border rays is 
inside a triangle edge, then x =   p e  taking the closest one, else 
continue: 

3) Use the closest triangle vertex   x i  as point x. 

The different conditions are implemented as follows (see also 
Figure 3.10): 

  p

    p t

  n

  a

  b

 p

   p e,1
      p e,2

   p e,3

  a3

    x 1

    x 2
    x 2

    x 3
  x 3

  x 4 = x 1

 

Figure 3.10 Closest point to triangle distances 

1) The projection     p t  of p is inside the triangle if the following condition 
is satisfied: 

   

a ≥ 0 ∩ b ≥ 0 ∩ a + b ≤ 1 with

a =
p − x 1( )⋅ n × x 3 − x 1( )( )
x 2 − x 1( )⋅ n × x 3 − x 1( )( )

b =
p − x 1( )⋅ n × x 2 − x 1( )( )
x 3 − x 1( )⋅ n × x 2 − x 1( )( )

p t = x 1 + a x 2 − x 1( )+ b x 3 − x 1( )

 (3.17) 
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2) The projection   p e  is on an edge if: 

      

0 ≤ al ≤ 1 with l ∈ 1,3[ ]

al =
x l+1 − x l( )⋅ p − x 1( )

x l+1 − x l
2

p e, l = x l + al x l+1 − x l( )
 (3.18) 

If the coupling distances include the normal and/or the color feature, 
linear interpolation can again be used to obtain these feature values for 
the point x. The factors a and b calculated as above can be used to weight 
the vertex feature vectors in order to approximate the normal or color 
vector for x. However, the point x is not necessarily closest in color or 
surface orientation. 

The Lagrange technique finds the point x inside a triangle (step 1) 
which minimizes the sum of all feature distances as defined in (3.15) at 
once. The triangle vertices include all features in one vector and the 
following distance has to be minimized. 

      

t x = x 1, x 2 ,x 3{ } with x l = g x, l ,n x ,l ,c x, l( )
x = ax 1 + bx 2 + cx 3( ) and v = p − x

d = min
a, b, c

v 2 = min
a, b, c

v ⋅ v( ) with a + b + c = 1
 

(3.19) 

Applying the technique of Lagrange multipliers, this minimization 
problem is equivalent to solve 

      

find min
a , b, c

L = v ⋅v + λ  a + b + c − 1( )[ ]
 subject to the constraint a + b + c = 1.

 
(3.20) 

This is solved by setting the partial derivatives of the criterion L to zero 
giving the following system of equations for a, b and c: 

    

a + b + c − 1 = 0
∂L
∂a

= 0,∂L
∂b

= 0, ∂L
∂c

= 0
 (3.21) 

If all factors a, b and c are in the range [0, 1], the point x is inside the 
triangle and can be calculated with (3.19). If this is not the case, the same 
steps 2 and 3 of the above routine have to be performed. The point x may 
lie on a triangle edge (check condition (3.18) with extended feature 
vectors) or correspond to the feature vector of a triangle vertex. 
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Fast calculation of closest point on triangle mesh 

This section presents a fast closest point to triangle search. As proposed 
by Simon in [SIM], a kD tree is used to select only a few triangles in 
which the closest point is searched for. The basic idea is to first find the 
closest vertex on X. This search can be done efficiently with a kD tree. 
Then, the more complex point to triangle distance is calculated only for 
the triangles attached to the closest triangle vertex. 

This approach assumes that the object surface is sufficiently densely 
sampled to ensure that the triangle with the correct closest point is 
attached to the closest triangle vertex. Critical regions are thin convex or 
concave object parts where this assumption may not hold (see 
Figure 3.11). 

X

P

closest vertex
wr ong closest point

correct closest point

 

Figure 3.11 Limitations of the fast closest point on triangle mesh method 

3.4.6 Closest point on a textured surface 

Textured triangle meshes provide realistic object rendering even for 
sparsely sampled surfaces (see Section 2.5). Apart from visualization, 
texture images can also enhance the surface registration quality. The 
following method describes a closest point search based on texture image 
correlation. 

The basic idea is to project the color texture of two 3D surfaces onto 
an image plane. 2D image correlation matches subregions of the two 
texture images. The displacement vectors calculated in the image plane 
allows the 3D surface registration to be updated for small displacements. 
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As the surface texture of both surfaces has to be projected onto the same 
image plane, a previous rough registration of the two surfaces is 
necessary. This registration task can be performed by the ICP algorithm. 
Now, the surface textures of the overlapping parts can be projected and 
correlated in a common image plane. Since the image correlation is 
sensitive to scale and rotation, the correlation of the complete two texture 
images will fail in most cases. A better approach is to correlate small 
subregions of the textures. 

This work proposes to correlate several small texture windows. A 
texture window is attached to a closest point coupling pair. The basic idea 
is to correlate the texture window attached to p with the texture around 
the closest point y in order to update the position of y. The texture images 
of the surfaces P and X have in general not the same scale and orientation 
because they have been acquired from different points of view. If the 
texture image of the surface P is transformed such that it looks as it 
would have been taken from the same view point as the texture image of 
X then the image correlation can work successfully. The closest point 
couplings of the ICP algorithm help to perform this image transformation 
and to calculate the corresponding warping function. 

Once the texture images are in the same reference frame, the texture 
windows of the closest points are correlated and the position of the 
closest point y is updated in the image space. The resulting 2D 
displacement vector allows the position of y in the 3D space to be 
updated. The modified closest points are used in the ICP matching error 
minimization to find a new optimal rigid transformation. 

The following points describe the closest point search using texture 
images in more details: 

1) Since the image correlation is a computation intensive task, only the 
vertices p on P which have a closest point on X and a texture of high 
contrast are selected. A low contrast is not pertinent and is 
inadequate for correlation. The contrast of the texture window  wt  
with   N t  pixels attached to a vertex p is defined as the standard 
deviation of the grayscale pixel values: 

    
s =

1
N t

wt , p k( )2

k =1

N t

∑ − N t w t , p
2⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  with w t , p =

1
N t

wt , p k( )
k =1

N t

∑  (3.22) 

2) The texture images of P and X have to be mapped onto the same 
reference frame before the image correlation can be launched. The P 
image space is mapped to the X image space with an image transform 
defined by two 2-nd degree polynomials (one for each spatial 
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coordinate). This corresponds to an affine transformation. This 
warping function can be defined by a set of corresponding points in 
both images. Since the closest point couplings of the 3D shape 
geometry are available from the ICP algorithm, corresponding pixels 
on both texture images are known (see Figure 3.12). 

closest point couplings 
define affine transformation

3D surface  
registration 
of P and X

texture image 
of X

texture image 
of P

warped texture 
image of P

p
y

 

Figure 3.12 Texture image warping using the ICP closest point couplings 

3) For every selected vertex p, the closest point y in X is updated as 
follows. The texture window centered at a point p from the warped P 
texture image is correlated with texture image of X. The correlation is 
only calculated in the neighborhood of the closest point y. The 
correlation factor is defined as follows: 

    

r =
w t , p k( )wt , x k( )

k =1

N t

∑ − N t w t , pw t , x

wt , p k( )2

k =1

N t

∑ − N t w t , p
2⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ wt , x k( )2

k =1

N t

∑ − N t w t , x
2⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

with  w t , x = 1
N t

wt , x k( )
k =1

N t

∑

 (3.23) 

 The closest point y in the X image is moved to the location with the 
highest correlation factor as shown in Figure 3.13. 
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Figure 3.13 Texture image correlation updating the closest point couplings 

4) The displacement vector in the texture image space is used to update 
the closest point y in 3D space. The displacement vector is expressed 
as a linear combination of two triangle edges in the image space. The 
calculated factors are applied to the triangle edges in 3D space, which 
assumes that the new closest point lies on the triangle plane. This 
restriction is acceptable if the object surface is locally smooth and the 
displacement vector small. 

5) The matching error minimization of the ICP algorithm is launched 
again with the updated closest point couplings. 

3.5 Optimal rigid transformation 

Given the surfaces P and X and the point couplings    C
(i) p k ,y k( ) find the 

rigid transformation that minimizes the matching error       e
(i) (R (i) , t ( i) )  as 

stated in (3.9). The following sections show how the rotation and 
translation, which minimize the matching error, can be calculated. The 
matching error of (3.8) is expanded into different sums. This allows the 
best translation and rotation to be found independently as proposed in 
[HOR]. 

To make the explanations more readable, the iteration index i in (3.8) 
is dropped and the total transformation is set to the identity 
transformation and therefore       ̃ p k = p k . 

      
e = Rp k + t( )− y k

2

k =1

N

∑  (3.24) 

Here, the feature vectors     p k  and   y k  contain only the geometric feature g 
representing the Cartesian point coordinates. The integration of other 
features in the matching error minimization is discussed in Section 3.5.4. 
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3.5.1 Finding the best translation 

The error of (3.24) can be split up into the following sums 

      
e = Rp k − y k

2

k =1

N

∑ + 2t ⋅ Rp k − y k( )
k =1

N

∑ + t 2

k=1

N

∑ . (3.25) 

The first and the third term depend only on R or t whereas the second 
term is mixed. If the mixed term can be set to zero, the error e can be 
minimized successively for R and t since the other two terms are positive. 
The mixed term disappears if the data points   p k  and     y k  are referred to 
their centroids 

      

p =
1
N

p k
k =1

N

∑ , y =
1
N

y k
k =1

N

∑
′ p = p − p , ′ y = y − y 

. (3.26) 

Now the error of (3.24) can be rewritten as 

      

e = R ′ p k + ′ t ( )− ′ y k
2

k =1

N

∑
with ′ t = R p + t − y 

 (3.27) 

and expanded into the following sums 

      
e = R ′ p k − ′ y k

2

k =1

N

∑ + 2 ′ t ⋅ R ′ p k − ′ y k( )
k =1

N

∑ + ′ t 2

k =1

N

∑ . (3.28) 

The second term which sums up all the data points is now equal to zero 
since the measurements are referred to their centroids. The remaining 
first and third term cannot be negative and can therefore be minimized 
individually. The total error is obviously minimal if the last term is zero 
which leads to the best translation vector. 

  t = y − R p  (3.29) 

The first term in (3.28) is the last one not yet equal to zero and depends 
only on R. The best rotation is therefore the one which minimizes the 
term: 

      
e = R ′ p k − ′ y k

2

k =1

N

∑ . (3.30) 

Once the rotation matrix is obtained from the minimization of (3.30), the 
translation vector is easily calculated with (3.29), which corresponds to 
the difference of the centroid of   y k  and the rotated centroid of     p k . 
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3.5.2 Finding the best rotation 

Several methods to find the rotation matrix R exist which minimize the 
matching error of (3.30). Among them, the ones having a closed-form are 
the most interesting (see Zhang for an extensive list [ZHA]). 

One of the fastest implementations is the singular value 
decomposition (SVD) algorithm proposed by [ARU]. Here, the rotation 
matrix R is equal to the multiplication of the two orthonormal matrices 
obtained from the singular value decomposition of the following matrix 

      
H = ′ p k ′ y k

T

k =1

N

∑ . (3.31) 

The SVD method has the disadvantage of the resulting matrix possibly 
representing a rotation or a reflection (mirroring). 

Faugeras proposed the use of unit-quaternions to solve (3.24) for R 
and t [FAU]. Unit-quaternions have several advantages. The resulting 
matrix is always a rotation matrix. It is much simpler to enforce the 
constraint that a quaternion is of unit magnitude than to ensure that a 
matrix is orthonormal. In this work, a combination of the work of 
Faugeras [FAU] and Horn [HOR] is implemented. 

Quaternions 

Several authors used quaternions for computer vision tasks and give a 
good introduction and definition of their calculus [FAU] [HOR] [AMA]. 

A quaternion consists of a vector with four components. Quaternions 
can be interpreted as complex numbers where the first component is a 
scalar and the second component an imaginary vector as stated in (3.32). 
Quaternions are denoted as vectors with dots above them. 

   Ý q = q0 , qx ,q y ,qz( )= q0 ;q( ) (3.32) 

A real number s is identified by the quaternion (s, 0) and a real vector v 
by the purely imaginary quaternion (0, v). The conjugate     Ý q *  of a 
quaternion     Ýq  is defined similar to the one for complex numbers: 

      Ý q * = (q0 ;−q) . (3.33) 

The product of two quaternions   Ýq  and   Ýr  is defined as follows (· dot 
product, ×  cross product) 
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Ý q ⊗ Ý r = q0r0 − q ⋅r ,q0r + r0q + q × r( )
= q0r0 − qx rx − qy ry − qzrz , q0 rx + qx r0 + qy rz − qzry ,(
   q0ry − qx rz + qy r0 + qz rx ,q0 rz + qx ry − qy rx + qz r0 )

 (3.34) 

and can also be expressed in terms of the product of an orthogonal matrix 
with a quaternion vector. Note that the quaternion multiplication is not 
commutative, this leads to two different matrices depending if the first or 
second factor is expanded in a matrix. 

      

Ý q ⊗ Ý r =

q0 −qx −q y −qz

qx q0 −qz qy

qy qz q0 −qx

qz −qy qx q0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

Ý r = Q Ý r ,

Ý r ⊗ Ý q =

q0 −qx −qy −qz

qx q0 qz −qy

qy −qz q0 qx

qz q y −qx q0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

Ý r = Q Ý r  and 

Ý r ⊗ Ý q * = Q T Ý r 

 

(3.35) 

The definition of the magnitude of a quaternion is 

      

Ý q 2 = Ý q * ⊗ Ý q = Ý q ⊗ Ý q *

= q0
2 + q 2 ,0( )= Ý q 2 ,0( )= Ý q ⋅ Ý q , 0( )

 (3.36) 

where represents the quaternion magnitude, the usual Euclidean 
norm and · the dot product. 

Rotations and quaternions 

As stated before, a data vector can be represented by a purely imaginary 
quaternion. So, a rotation of a data vector can be represented by an unit-
quaternion if there is a way to transform purely imaginary quaternions to 
purely imaginary quaternions. The next development shows that the 
composite product 

      

Ý ′ r = Ý q ⊗ Ý r ⊗ Ý q *

with Ý r = (0, rx , ry ,rz )
 (3.37) 
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is purely imaginary where r is the data point to be rotated and     Ýq  an unit-
quaternion. This can be proven if the quaternions are expanded as follows 
using (3.35). 

      

Ý ′ r = Ý q ⊗ Ý r ⊗ Ý q * = Q Ý r ( )⊗ Ý q * = Q T Q Ý r ( ) = Q T Q( )Ý r ,

Q T Q =

1 0 0 0

0
q0

2 + qx
2

−qy
2 − qz

2
2 qx qy − q0qz( ) 2 qx qz + q0 qy( )

0 2 qx qy + q0qz( ) q0
2 − qx

2

+qy
2 − qz

2
2 qy qz − q0qx( )

0 2 qx qz − q0q y( ) 2 qy qz + q0 qx( )
q0

2 − qx
2

−qy
2 + qz

2

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

 (3.38) 

Since the three upper-right elements of   Q T Q  are zero     Ý ′ r  is purely 
imaginary. Horn proves that the lower-right-hand  3 × 3  submatrix of 

    Q T Q  represents a valid rotation matrix which is defined by the unit-
quaternion     Ýq  [HOR]. 

If a rotation is defined by an axis u (a vector of length 1) and a 
rotation angle φ then the corresponding quaternion   Ýq  is calculated as 
follows [HOR]: 

    
Ý q = cos φ

2
,sin φ

2
u⎛ 

⎝ 
⎜ 

⎞ 
⎠ 
⎟ . (3.39) 

Finding the best rotation 

As stated before, the remaining matching error consists only of the first 
term in (3.28) since the second is zero by definition and the computation 
of the translation as shown in (3.29) sets the third to zero for any R. 

The remaining error can be rewritten using the quaternion calculus 
and the representation of (3.37) for the rotation R. 

      

Ý e = e,0( ) = R ′ p k − ′ y k
2 ,0

k =1

N

∑
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ = Ý q ⊗ ′ Ý p k ⊗ Ý q * − ′ Ý y k

2

k =1

N

∑
with ′ Ý p k = 0, ′ p k( ) and ′ Ý y k = 0, ′ y k( )

 (3.40) 

The following developments give a way to find the unit-quaternion     Ýq  that 
minimizes e by calculating the eigenvector corresponding to the smallest 
eigenvalue of a matrix A. 
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First, the error in (3.40) is multiplied with the square magnitude of 
the unit-quaternion     Ýq  which does not change its value but will allow the 
regrouping of the different terms into one multiplication: 

      
Ý e = Ý q ⊗ ′ Ý p k ⊗ Ý q * − ′ Ý y k

2 Ý q 2

k=1

N

∑ , (3.41) 

which can be factorized and simplified into 

      

Ý e = Ý q ⊗ ′ Ý p k ⊗ Ý q * ⊗ Ý q − ′ Ý y k ⊗ Ý q 2

k=1

N

∑  with Ý q ⊗ Ý r 2 = Ý q 2 Ý r 2

= Ý q ⊗ ′ Ý p k − ′ Ý y k ⊗ Ý q 2

k=1

N

∑  with Ý q * ⊗ Ý q = Ý q 2 = 1,0( )
 (3.42) 

Since the imaginary part of the error quaternion   Ýe  is a zero vector only 
the real part of     Ýe  is observed and rewritten using (3.36) 

      

e = Ý q ⊗ ′ Ý p k − ′ Ý y k ⊗ Ý q 2

k =1

N

∑ = Ý q ⊗ ′ Ý p k − ′ Ý y k ⊗ Ý q ( )⋅ Ý q ⊗ ′ Ý p k − ′ Ý y k ⊗ Ý q ( )
k =1

N

∑

= Ý q ⊗ ′ Ý p k( )⋅ Ý q ⊗ ′ Ý p k( )− 2 Ý q ⊗ ′ Ý p k( )⋅ ′ Ý y k ⊗ Ý q ( )+ ′ Ý y k ⊗ Ý q ( )⋅ ′ Ý y k ⊗ Ý q ( )
k =1

N

∑
 

(3.43) 

and gives together with the matrix representations of (3.35) 

      

e = ′ P k Ý q ( )⋅ ′ P k Ý q ( )− 2 ′ P k Ý q ( )⋅ ′ Y k Ý q ( )+ ′ Y k Ý q ( )⋅ ′ Y k Ý q ( )
k =1

N

∑

= ′ P k Ý q ( )T
′ P k Ý q − 2 ′ P k Ý q ( )T

′ Y k Ý q + ′ Y k Ý q ( )T
′ Y k Ý q 

k =1

N

∑

= Ý q T ′ P k
T ′ P k Ý q − 2 Ý q T ′ P k

T ′ Y k Ý q + Ý q T ′ Y k
T ′ Y k Ý q 

k =1

N

∑

= Ý q T ′ P k
T ′ P k Ý q − 2 Ý q T ′ P k

T ′ Y k Ý q + Ý q T ′ Y k
T ′ Y k Ý q 

k =1

N

∑

= Ý q T ′ P k
T ′ P k − 2 ′ P k

T ′ Y k + ′ Y k
T ′ Y k( )Ý q 

k =1

N

∑

 (3.44) 

The minimization problem can now be stated as follows: 
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emin = min
Ý q 

Ý q T A k Ý q 
k=1

N

∑ = min
Ý q 

Ý q T A Ý q  

with A k = ′ P k
T ′ P k − 2 ′ P k

T ′ Y k + ′ Y k
T ′ Y k  and A = A k

k=1

N

∑
 (3.45) 

where     Ýq  is an unit-quaternion. If the following sums of cross-correlations 
are introduced 

      
S xx = ′ p k ,x ⋅ ′ y k ,x

k =1

N

∑ ,  S xy = ′ p k,x ⋅ ′ y k ,y
k =1

N

∑  and so on, (3.46) 

then A can be rewritten in a more expressive manner as 

      

A = ′ p k
2 I

k=1

N

∑ − 2B + ′ y k
2 I

k =1

N

∑

with B =

S xx + S yy + S zz S yz − S zy

S yz − S zy S xx − S yy − S zz

S zx − S xz S xy + S yx

S xy − S yx S zx + S xz

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

S zx − S xz S xy − S yx

S xy + S yx S zx + S xz

−S xx + S yy − S zz S yz + S zy

S yz + S zy −S xx − S yy + S zz

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

 

(3.47) 

Note that B, hence A, are symmetric matrices. Applying the technique of 
Lagrange multipliers, the problem of (3.45) is equivalent to 

      

find min
Ý q 

L = Ý q T A Ý q + λ 1 − Ý q 2( )[ ]
subject to the constraint Ý q = 1

 (3.48) 

This is solved by setting the partial derivatives of the criterion L to zero. 

      

∂L
∂ Ý q 

= A Ý q + Ý q T A( )T
− 2λ Ý q = A Ý q + A T Ý q − 2λ Ý q = 0  (3.49) 

Since A is a symmetric matrix (see (3.47)) the expression of (3.49) 
becomes 

    

2A Ý q − 2λ Ý q = 0
A Ý q = λ Ý q 

 (3.50) 
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which expresses the fact that   Ýq  is an eigenvector of matrix A. Actually, 
the unit-quaternion which minimizes the matching error e is equal to the 
normalized eigenvector associated with the smallest eigenvalue because 
the matching error is equal to the eigenvalue (see (3.51)). All eigenvalues 
are positive since the error is a sum of square distances. 

      

e = Ý q T A Ý q  and A Ý q min = λmin Ý q min

emin = Ý q min
T A Ý q min = Ý q min

T λmin Ý q min

= λmin Ý q min
T Ý q min = λmin Ý q min

2 = λmin

 (3.51) 

The presented method to calculate the optimal rigid transformation, 
which minimizes the matching error, can be summarized as follows: 

1) refer all data points to their centroid (3.26) 

2) build the matrix A using the definitions of (3.46) and (3.47) 

3) calculate the smallest normalized eigenvector and use it as 
quaternion   Ýq  

4) use     Ýq  to calculate the best rotation matrix R with (3.38) 

5) find the best translation t by calculating (3.29) 

3.5.3 Weighted couplings 

In several applications there is some interest in attributing different 
weights to the couplings in    C

(i) (p k , y k )  used for the matching error 
minimization. This allows, for example, to weight the couplings according 
to their reliability or to consider the influence of outliers. 

Every coupling in       C
(i) (p k , y k )  gets a weight  w k  and the matching 

error e of (3.24) becomes 

      
e = wk Rp k + t( )− y k

2

k =1

N

∑ . (3.52) 

The principle of the error minimization showed in the previous section 
does not change. However, the substitution made in (3.26) is replaced by 
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p = 1
W

w k p k
k =1

N

∑ , y =
1

W
w k y k ,

k=1

N

∑
′ p = p − p , ′ y = y − y ,

W = w k
k =1

N

∑
 (3.53) 

 

and the calculation of the matrix A is done with 

      
S xx = wk ′ p k ,x ⋅ ′ y k ,x( )

k =1

N

∑ ,  S xy = wk ′ p k,x ⋅ ′ y k ,y( )
k =1

N

∑  and so on, (3.54) 

and 

      
A = w k p k

2 I
k=1

N

∑ − 2B + w k y k
2 I

k =1

N

∑ . (3.55) 

A meaningful use of the coupling weights  w k  is to make them vary with 
the coupling distance   d k  of (3.6) or to use a reliability measure calculated 
for every point during the scanning process. For example points with a 
surface normal parallel to the scanner view direction can be sensed more 
accurately. Different functions, which define  w k  using  d k , are presented 
in the Section 4.5.5 and the Section 5.6.1. 

3.5.4 Convergence of the modified ICP algorithm 

The use of several features in the coupling distance d (3.15) or the 
introduction of weights in the matching error e (3.52) can modify the 
convergence of the ICP algorithm. 

So far, the monotonical convergence of the ICP algorithm is proven if 
both the coupling distance d and the matching error e use the geometric 
feature and the couplings are not weighted (see Section 3.3.3). 

In the following, a modified ICP algorithm is discussed. First, 
methods are discussed to include the color and the surface orientation 
features in the matching error minimization. Then the following sections 
investigate the influence on the ICP convergence when these features are 
not observed for the matching error minimization. Finally, the 
convergence behavior of the ICP algorithm with coupled weights in the 
error minimization is discussed. 



 Geometric point matching 

 57 

Color 

The matching error of (3.24) including both the geometric feature and the 
color feature results in 

      
e = Rg p ,k + t( )− g x,k

2

k =1

N

∑ + c p,k − c x ,k
2

k=1

N

∑ . (3.56) 

Since the color information of a surface point is not affected by the 
calculated rigid transformation (R, t) there is no need to include it in the 
matching error minimization [GODb]. This allows the use of the closed-
form solution based on quaternions without modifications. 

The proof of convergence of Section 3.3.3 still holds since     e(i) ≤ d (i)  
and     d (i+1) ≤ e(i)  are true because the color term in (3.56) does not change 
with (R, t). 

Surface orientation 

If the surface orientation feature expressed by the surface normal vector 
is included in the minimization process the matching error changes as 
follows 

      
e = Rg p ,k + t( )− g x,k

2

k =1

N

∑ + Rn p ,k − n x,k
2

k=1

N

∑ . (3.57) 

The normal feature is affected by the rotation of the rigid transformation 
which minimizes e. No substitution as in (3.26) exists to bring (3.57) in a 
form which could be solved with the closed-form solution presented in 
Section 3.5.2. Iterative least-square methods as for example extended 
Kalman filtering have to be applied to minimize (3.57) (see [CHA] and 
[FELa]). Such methods usually need more computation time [ARU]. 

Another approach proposed in this work minimizes only the first 
term of (3.57) using the closed-form solution based on quaternions. Then, 
the convergence of the ICP algorithm is not guaranteed any more. 
Because the features in the coupling distance d and the matching error e 
are no longer the same and the normal vectors are changed by R, the 
convergence condition     d (i+1) ≤ e(i)  of Section 3.3.3 is not necessarily true. 

However, experimental work presented in the Section 5.8 investigate 
the practical use and convergence of this approach. 
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Coupling weights 

As stated in Section 3.4.1 and Section 3.5.3 there is an interest to attribute 
different weights to the closest point couplings used in the matching error 
minimization. 

The convergence condition of (3.11) still holds when the value of the 
coupling weights   w k  does not change from one iteration to another. This 
is for example the case if the weights  w k  represent some fixed reliability 
measure that is associated to the data points   p k . 

In the object digitization application, the weights are used to exclude 
points in P which do not overlap with X (see Section 5.6.1). Couplings, 
which have a coupling distance d larger than a certain threshold, are not 
used. As the data points are moved during the ICP iterations, the points 
which are excluded change and therefore the convergence proof of 
Section 3.3.3 can not be applied any more [GODb] [ZHA]. 

However, experimental results based on two different weighing 
functions presented in Section 4.5.5 and Section 5.6.1 show that the ICP 
algorithm converges successfully even if the weights change during the 
iterations. 

Conclusions 

The modified ICP algorithm using only the geometric distance for the 
matching error minimization converges to a minimum when the 
following conditions are met: 

1) The additional features used for the closest point search are not 
affected by the rigid transformation 

2) The coupling weights   w k  associated to the   p k  are constant. 

3.6 Iteration termination 

Geometric point matching performed with the ICP algorithm is intensive 
in computation. This provides the motivation to keep the number of 
needed iterations as low as possible. Different measures are proposed to 
detect the moment when the ICP algorithm has reached a minimum: 

Absolute error: the coupling error   d (i)  falls below a certain 
threshold 
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Error change: the coupling error change   d (i−1) − d (i)  of two 
successive iterations falls below a certain 
threshold [BESb] 

Pose change: the calculated rigid transformation (      R (i) ,    t (i) ) at 
iteration i is small [CHA] which is the case when 
the length of the translation vector       t (i)  and the 
rotation angle corresponding to       R (i)  are both 
small 

The different thresholds are determined empirically. The sampling 
density of the surface points can be used to define an absolute error 
threshold since it allows the mean coupling distance of two matched 
surfaces to be estimated. 

Each of the above termination criteria has its own advantages. If an 
application as object digitizing needs accurate matching, the ICP 
algorithm should not be stopped before the absolute coupling error falls 
below the fixed accuracy. 

In other applications such as object recognition a short system 
response is more important. The error or pose change allows quick 
detection if the matching will continue to change or if it is locked in a 
local minimum. 

For some applications the coupling error   d (i)  representing the mean 
square distance of all ICP couplings is showed to be insufficient to 
measure the quality of the surface registration. Different error statistics 
are proposed to replace   d (i)  for the absolute error or error change 
measure (see Section 4.5.4). 

3.7 Successful convergence 

Section 3.3.3 assessed the existence of convergence for the standard ICP 
algorithm. However, the reached minimum does not necessarily coincide 
with the absolute minimum. Successful convergence is obtained when the 
matching finds the absolute minimum. 

The absolute minimum of the matching error is only obtained for a 
subset of all the possible pose configurations of two surfaces. The closest 
point search which approximates the correct but unknown 
correspondence function c is valid only if both surfaces are roughly 
registered. The ICP algorithm needs an estimate of the correct matching 
solution or else it misses the absolute minimum. 
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The following section presents a method that investigates the nature 
of the pose configurations which lead to successful convergence and 
means to display it. 

3.7.1 SIC-range 

The rigid transformation, which brings the surface P into a certain pose 
expressed relatively to the fixed surface X, is called an initial 
configuration. Considering the 6D space of all possible initial 
configurations, successful matching is obtained only from a subrange of 
it, named the successful initial configuration range or SIC-range. Note, 
that this range does not have to be connected. 

Preferred setup 

The following setup is defined in order to measure the SIC-range 
empirically. The dimension of the 6D (rotation and translation 
parameters) space including all possible initial configurations is reduced 
to a 3D space as proposed in Figure 3.14. The surfaces P and X are 
orientated with the help of the a priori knowledge of the scanner view 
direction. 

P
φ

θ

ω

zenith
view point

 φ zenith angle 
 θ azimuth angle 
 ω view axis rotation angle

y

x
view axis

 

Figure 3.14 SIC-range measurement setup 

The surface P is first correctly registered with the surface X. This can be 
done for example with an ICP matching supervised by an human 
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operator. Then, the center of mass of the surface P is moved along the 
scan view direction until it crosses the circumsphere of the surface X with 
the center of the circumsphere being the center of mass of X. This 
intersection point is referred to as the zenith. 

The reduced space of initial configurations is defined by the triple 
(φ, θ, ω) where φ and θ are respectively zenith and azimuth angles in the 
spherical reference system of X and ω designates the rotation angle 
around the view axis. A point on the circumsphere defined by the pair 
(φ, θ) is called a view point. A view axis is defined by the center of mass of 
X and a view point. 

The surface P is placed at several view points and rotated around the 
corresponding view axis. This setup is well suited for studying successful 
convergence and motivated by the following facts: 

- The surface P is placed at an optimal distance near the center of mass 
of X so that during the first ICP iterations meaningful couplings can 
be established. 

 

- During the ICP matching, the surface P is moved towards the surface 
X in a way that discourages any match of P with the invisible surface 
parts of X. Only surfaces with similar orientation get coupled. 

SIC-range of (φ, θ, ω) space 

Thus, the SIC-range is measured in the (φ, θ, ω) space. In order to do so, 
the (φ, θ, ω) parameter space of all possible initial configurations has to 
be inspected for successful matching. The set of all successful 
configurations forms the SIC-range. 

Starting from the zenith configuration (φ, θ, ω) = (0°, 0°, 0°), the 
complete (φ, θ, ω) parameter space is explored in steps varying the 
azimuth angle θ from 0° to 360°, the zenith angle φ from 0° to 180° and 
the view axis rotation angle ω from 0° to 360°. More formally, the 
transformation, which orientates P on a view point, rotates P by zenith 
angle φ around the axis which is perpendicular to the great circle of 
azimuth angle θ. 

For every initial configuration defined by (φ, θ, ω), the ICP algorithm 
is launched. If the ICP converges towards the absolute minimum the 
initial configuration is labeled as successful and its pose is added to the 
SIC-range. 
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The absolute minimum is determined practically by one of the 
following two methods: 

– The convergence is successful if the matching error falls below a fixed 
threshold. The threshold is selected small enough. 

– If the pose of the successfully registered surface P is known in 
advance, the following method applies. Calculate the difference of the 
pose found by the ICP algorithm and the correct one. If the resulting 
translation vector and rotation angle are both small, the absolute 
minimum is reached. 

3.7.2 SIC-map 

The following representation permits the visualization of the 3D SIC-
range of the (φ, θ, ω) space in a 2D graph. 

The view points on the circumsphere of X are projected on a plane 
tangential to the zenith. This plane represents the (φ, θ) space where φ 
and θ correspond to the polar coordinates which define the view point 
positions. Therefore, view points having the same zenith angle lie on 
circles. 

For every view point, a small circle represents the range of the 
parameter ω . A successful initial configuration of the SIC range is drawn 
as a black sector in the circle of the corresponding view point (see 
Figure 3.15). The sum of all black sectors for a specific view point is also 
referred as the SIC-range of ω.. 
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Figure 3.15 Definition of the SIC-map 



 

 

Chapter 4 

Object recognition 

The object recognition task is the first of three applications implemented 
in this work. All three applications use the geometric point matching 
algorithm presented in Chapter 3. Since the nature of the matching 
problem changes from one application to another (see Section 3.4.1) the 
geometric point matching is adapted as required. 

The considered objects have free-form surfaces which are 
represented by points or triangles as motivated in Chapter 2. 

The presentation of the different applications in this and the 
following two chapters is structured as follows. After an introduction to 
the problem to be solved has been provided, a comparison to other work 
is given, then the implementation and adaptation of the ICP algorithm 
follows and finally results are presented. 

The presented work has been published in [HUGa] [HUGb] [HUGc] 
[HUGd] [SCHc] [SCHd] [SCHg] [SCHh] [SCHi]. 

4.1 Introduction 

The term object recognition covers a large range of computer vision 
applications. The work described in this chapter is carried out in the 
context of knowledge based 3D object recognition which is outlined as 
follows. 

The object recognition system has to find the type and the pose of 3D 
objects placed randomly on a workspace. The objects have free-form 
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surfaces as defined in Section 2.1. The vision system has full knowledge 
about the shape and color of the objects and the working environment. 

Before the object recognition system is described in more detail, the 
terms "test" and "model" need to be defined. The test refers to the real 
world object information acquired by the 3D scanner. The model 
encompasses the object knowledge stored in the database. The object 
recognition system tries to find the corresponding model for a sensed test 
(see Section 1.3). 

4.1.1 Hybrid 3D vision system 

A hybrid object recognition system has been developed together with the 
vision group of the Institute of Microengineering of the Swiss Federal 
Institute of Technology in Lausanne. It combines range and intensity 
images to generate and verify object hypotheses. Figure 4.1 gives an 
overview of the different modules which build this system. 

hypothesis

real world

model  
database

intensity imagerange image

h ypothesis  
generation 

(range vision)

h ypothesis  
verification 

(intensity vision)

acquisition

recognized  
objects

 

Figure 4.1 Hybrid 3D vision system 

The scene acquisition is performed by a 3D scanner. It acquires the range 
and intensity images. The 3D information from the range image is used in 
the hypothesis generation module whereas the hypothesis verification 
uses the intensity information. 

The hypothesis generation module generates a hypothesis consisting 
of the type and the pose of the objects present in the scene. This object 
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recognition task uses the 3D geometry information from the object 
models in the database. 

The hypothesis verification module uses the generated hypotheses to 
render a synthetic image of the scene. This module operates on the same 
model representation as the hypothesis generation module. Additionally, 
the stored photometric information of the objects and a priori knowledge 
about the workspace and camera position are used for the image 
rendering. The synthetic image is compared to the real intensity image in 
order to verify the validity of the object hypotheses. 

Finally, the hybrid 3D vision system returns all recognized objects to 
build a complete representation of the sensed real world. 

This work presents the development of the hypothesis generation 
module whereas the hypothesis verification module is described in 
[NATb]. 

4.2 Comparison with other work 

In previous work at our lab, the object recognition task has been 
performed according to the classical segmentation approach [AMA] 
[GIN]. The range image of the scene is first segmented into planar faces. 
These are then grouped and compared to polyhedral models. This 
approach had to be abandoned because the segmentation of objects 
becomes unstable when dealing with free-form objects. 

Therefore, geometric point matching has been selected. The ICP 
algorithm matches the object surface of the test with all models in order 
to find the correct one. 

Unfortunately, the ICP algorithm does not always find the correct 
matching for a random pose configuration of two surfaces representing 
the same shape. The ICP algorithm needs a rough pose estimate in order 
to converge to the absolute minimum (see Section 3.7). This problem has 
to be solved before the ICP algorithm can be applied to object 
recognition. 

To our knowledge, only Chua and Jarvis [CHU] proposed the ICP 
algorithm for object recognition. They find a pose estimate for the test 
and the model surface by first establishing 3-tuples with corresponding 
principal curvatures on both surfaces. Other authors propose the use of 
features as edges or triangles to find a pose estimate for surface 
registration tasks [BERa] [CHS] [FELb]. This usually results in many 
possible candidates which have to be verified [CHS]. 
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One or several pose estimates can be derived from contextual knowledge 
about the 3D scanner setup [BLA] [CHE] or from scan sequences as for 
example in object tracking [SIM] [ZHA]. 

In this work a priori knowledge of the model pose is not available and 
feature extraction, especially when using second-order derivatives as for 
example curvatures is not reliable for free-form surfaces (see 
Section 2.2.2). 

Here, a novel approach is proposed which is to apply the ICP 
algorithm for an object recognition task. Instead of looking for a rough 
pose estimate of the test and model surface, the presented object 
recognition system systematically launches the ICP algorithm for several 
well-conditioned test and model poses referred to as initial 
configurations. The number and setup of these initial configurations is 
based on the experimental inspection of the size of the range of successful 
convergence of the ICP algorithm as introduced in Section 3.7. This 
knowledge provides the assurance that the ICP algorithm finds a correct 
match to the test and the corresponding model for at least one initial 
configuration. 

The following sections discuss the different methods which have been 
used to implement the ICP algorithm in the hypothesis generation 
module for the object recognition task. 

4.3 Model database 

The model database supports both hypothesis modules as shown in 
Figure 4.1. It encompasses the geometric and the photometric 
information of all objects which can appear in the real world. Both vision 
modules use this common database to ensure a consistent hypothesis 
representation. This simplifies the hypothesis generation since both 
systems use the same coordinate reference system. 

The surfaces of the object models are represented by low-level 
primitives as cloud of points or colored triangle meshes. This allows the 
use of the same model representation for the vision system and for image 
rendering (see Section 2.3). 

Model construction 

In order to generate an object model one needs to take into account all 
the properties of the real object. Models are twofold. The first part reflects 
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the geometry of the object. The second part defines the attributes of the 
object, among which there are the photometric attributes, which describe 
the way the object interacts with light. 

Three different techniques are used to construct the model database. 
The first uses the conventional technique of defining objects by entering 
the surface coordinates manually. This is generally considered as tedious. 

The second and so far the most interesting technique uses 3D 
geometric databases from different commercial CAD packages. The 
advantage of this solution, especially in the case of automated assembly, 
is that precise and complete databases of technical drawings can be 
reused. This is possible since most CAD packages now allow the export of 
their data as cloud of points or triangle meshes. 

A third technique relies on the use of 3D scanners which are used 
when the outer surface dimensions of free-form objects have to be 
determined. Simple cloud of points models have been generated by fusing 
different views of an object exposed on a turn table to the 3D scanner 
[HOU]. A more sophisticated technique for object digitizing is 
implemented in Chapter 5. 

The digitizing system based on the 3D scanner acquires object 
geometry and color at the same time. This is one of its advantages 
compared to the other two model construction methods where color is 
usually not present. 

4.4 Preprocessing of sensed data 

The acquisition module feeds both the hypothesis generation and the 
hypothesis verification with the necessary data. Two different 3D 
scanners, which are presented in Section 2.4.1 and Section 4.7.2, acquire 
the range and intensity image. 

The following sections describe the preprocessing of the range image 
used for the hypothesis generation. 

4.4.1 Scene segmentation 

The purpose of scene segmentation is to separate different objects in a 
range image. This is necessary since the applied object recognition can 
only match one object at a time. 
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If the depth of the background is known a simple threshold of the range 
image allows the location of the objects. This also works with textured 
backgrounds since the color information is not present in the range 
image. 

If the different objects touch one another, segmentation methods 
based on region homogeneity can be used to separate them. However, 
this segmentation criterion is in general too weak to segment a scene of 
free-form objects. 

This work proposes a change detection method to segment complex 
scenes. Rather than analyzing each image separately, it proceeds 
iteratively by detecting objects as they are moved into the observed scene. 
Change detection refers to the possibility of subtracting two successive 
images in order to find changes in the scene, like added or removed 
objects. Change detection of intensity images is widely used in quality 
control and motion detection and often applies a simple difference 
threshold of two following images [FRE] [HER] [RUSa]. 

Range change detection 

Despite a wide use in intensity imaging, change detection has not found 
its way to range imaging. To our knowledge, the problem of change 
computation in the presence of real range images has not been addressed 
in the literature. In fact, there is an interest in detecting changes in range 
imaging. The motivation is related to the geometric nature of range 
imaging which results in measurements which reflect the intrinsic 
property of an object. Range differences are believed to be more stable 
than differences in the related intensity images. Obviously change 
detection can only be applied to images where changes happen. To isolate 
an object from a complex background at least two scene acquisitions are 
needed; before and after the object is moved. 

The difference calculation of two range images is more complex than 
for intensity images since range images may contain invalid data 
represented by NIL values (see Section 2.4.2). The black regions in 
Figure 4.2 indicate such NIL values and indicate points where the 3D 
scanner could not measure the surface. Special rules have to be defined to 
interpret the difference of a NIL and a valid pixel or two NIL pixels. 
Methods which solve this problem are discussed in more details in 
[SCHc]. The following Figure 4.2 shows an example of the detection of 
both an added and a removed object in a complex scene using a sequence 
of two range images. 
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detected objects
 

Figure 4.2 Segmentation of complex scenes with range change detection 

4.4.2 Data reduction 

A reduction of the number of measured points is usually performed in 
order to reduce the ICP computation complexity as discussed in 
Section 3.4.3. To obtain a successful matching it is necessary for the point 
reduction to result in a homogenous point distribution on the object 
surface [SCHd]. This is achieved by the two following methods which 
apply to different data arrangements. 

When the data measurements are ordered in a range image which is a 
projection of the 3D scene in a 2D plane, a simple linear subsampling 
which takes every i-th point gives good results. 

If the cloud of points is in random order, as for example for the 
models obtained from several fused point clouds, an iterative point 
grouping method can be applied [SCHd]. A point is chosen at random to 
center a sphere of a certain radius. All surface points which fall inside this 
sphere are identified. These points are then removed from the point set 
and replaced by the point which corresponds to their center of mass. The 
iterative grouping continues with another point taken from the remaining 
points. The size of the sphere controls the density of the reduced point 
cloud. 

4.5 Hypothesis generation 

The hypothesis generation module uses the range image and the models 
from the database as input. The range image segmentation and point 
reduction methods provide the 3D geometry for every object to be 
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recognized. A test consists of a cloud of points which represents the 
visible part of an object of the scene. Every test is matched with all 
models in order to find the type and the pose of the model corresponding 
to the test. 

The following sections present the integration of the ICP algorithm in 
the object recognition system. 

4.5.1 Recognition setup for the ICP algorithm 

In a 3D object recognition system, the matching algorithm is used to 
compare a test with the models in the database. This should allow the test 
to be of any view of the corresponding model placed in any pose. As 
stated in Section 4.2, the ICP algorithm needs a rough pose estimate in 
order to successfully match the two surfaces. This work proposes to 
define several test and model poses called initial configurations. If 
enough initial configurations are used, the ICP algorithm will find the 
correct matching for at least one of them assuming that the test and the 
model represent the same object. 

An exhaustive inspection of all possible configurations would take to 
much time since there are six degrees of freedom which may be changed, 
three for the rotation and three for the translation. Note that the model 
pose is fixed and only the test is moved. The a priori knowledge of the 3D 
scanner position helps to constraint the recognition search. This allows 
the setup for the test and the model to be defined, which is similar to the 
one used for the SIC-range establishment in Section 3.7. 

First, given a view axis defined by the 3D scanner position and the 
center of mass of the test, the model is centered on this view axis so that 
the test lies in-between the model and the 3D scanner (see Figure 4.3). 
This placement ensures that the test surface not visible from the 3D 
scanner always faces the model. This also excludes the test surfaces from 
being compared with invisible model surfaces. 

Second, V view points are distributed uniformly on the sphere, 
circumscribing the model as drawn in Figure 4.3. Every view point is 
defined by the two spherical coordinates φ and θ. Now, the model is 
rotated around its center of mass so that every view point lies once on the 
view axis. Furthermore, the model is rotated in S steps around the view 
axis for each of these configurations. Every step corresponds to a view 
axis rotation angle ω. 

The ICP algorithm is then launched for every initial configuration as 
defined by the three coordinates φ, θ and ω. The use of different initial 



 Object recognition 

 71 

configurations and an appropriate selection of the numbers V and S will 
ensure that the matching converges at least once towards a successful 
matching. 

3D scanner

test, P

model, X θ

view axis
view point

ω

φ
 φ zenith angle 
 θ azimuth angle 
 ω view axis rotation angle

 

Figure 4.3 Recognition setup for the geometric point matching 

If the database consists of several models, the procedure described above 
has to be applied to every model. Finally, the model with the smallest 
matching error is selected. 

4.5.2 Recognition of scotch dispenser parts 

Figure 4.4 shows some of the first successful recognition results obtained 
for three scotch dispenser parts. The recognized models are represented 
by a cloud of points and projected into the image space using the camera 
model obtained from the 3D scanner calibration. This allows to visually 
verify the recognition result. 

 

Figure 4.4 Recognition results for scotch dispenser parts 
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A test contains about 200 points whereas a model has about 500 points. 
The ICP algorithm performs 30 iterations for every initial configuration 
defined according the setup of the previous section. Here, the number of 
initial configurations is set to 24 with V = 6 and S = 4. These numbers 
have been obtained by testing several configurations and selecting the 
optimal one. 

The next section presents experiments to asses the number of initial 
configurations in a more systematic way. 

4.5.3 Optimal recognition setup 

There is an interest in knowing the recognition performance as a function 
of the number of initial configurations. The less initial configurations are 
used the faster the object recognition is executed. However, the ICP 
algorithm may not find the correct matching if too few initial 
configurations are defined. This section proposes a method to build an 
optimal recognition setup with the knowledge of the range of successful 
convergence (SIC-range) of the ICP algorithm for a specific object. 

The SIC-range defined in Section 3.7.1 uses the same definition of the 
pose of two surfaces as the object recognition setup defined in 
Section 4.5.1. Since both setups work in the (φ, θ, ω) parameter space, the 
results of the SIC-maps can be used to design an optimal recognition 
setup. 

This process is shown here for the recognition of three toy objects 
presented in Figure 4.5. They represent injected plastic toys and are 
called duck, fish and swan. 

 

Figure 4.5 Free-form objects: duck, fish and swan 

First, a SIC-map is established for every object. Then, a simplified 
rectangular SIC-range is derived from the SIC-map and used to find a 
recognition setup which minimizes computation costs on the condition 
that successful convergence is obtained. 
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SIC-range 

For each toy one typical view is selected since the SIC-map construction 
for every possible view is much too laborious. The SIC-range is elaborated 
as defined in Section 3.7.1. Figure 4.6 shows for all toy objects the zenith 
configuration on which the SIC-map is centered. 

 

Figure 4.6 Zenith configuration of the three toy objects showing the model in gray and 
the test in black 

Starting from the zenith configuration, the complete (φ, θ, ω) parameter 
space is traversed in steps of 10° varying azimuth angle θ from 0° to 360°, 
zenith angle φ from 0° to 180° and view axis rotation angle ω from 0° to 
360°. The resulting SIC-maps of the three toy objects are presented in 
Figure 4.7 for the zenith angles ranging from 0° to 60°. 

 

Figure 4.7 SIC-map for free-form toy objects 
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One can observe that the SIC-range of ω (black sectors at every view 
point) decreases for view points with growing zenith angle φ. While this 
decrease depends on the azimuth for the fish it is nearly azimuth 
independent for the duck and swan. 

In any case, it is interesting to analyze how the size of the SIC-range 
of ω referred as Δω  varies with increasing zenith angle φ. Therefore, the 
following two statistical indicators are considered: 

- Δω , the mean of Δω  taken over all view points having a maximal 
zenith angle φ and any azimuth angle θ. 

-   Δωmin , the minimum of Δω  taken over all view points having a 
maximal zenith angle φ and any azimuth angle θ. 

The decreasing functions of Δω φ( ) and  Δωmin φ( ) are reported in 
Figure 4.8. 

duck

0
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200

0 20 40 60 80
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0 20 40
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0 20 4060 80 60 80

Δω  Δω min  

Figure 4.8 SIC-range statistics for ω  

A   Δω min  of 150° falls to 0° at a zenith angle  φ0  of 60° for the duck and the 
swan. For the fish, a   Δω min  of 200° falls to 0° at a zenith angle   φ0  of 40°. 

Rectangular SIC-range 

Considering the indicator  Δω min  a simple rectangular SIC-range 
description can be defined as follows: 

  SIC φ0 ,Δω 0( ) 
means that for   0 ≤ φ ≤ φ0  one has  Δωmin φ( ) ≥ Δω 0  

(4.1) 



 Object recognition 

 75 

In order to cover at least one successful configuration for any zenith 
angle, the value of   φ0  has to be chosen small enough so that the resulting 

  Δω 0 , which is defined as Δω 0 = Δωmin φ0( ), is larger than zero. An 
approximate and conservative SIC-range modeling for the statistics in 
Figure 4.8 could be for example: 

 SIC-range of duck and swan:  SIC(40°, 90°) 

 SIC-range of fish:    SIC(35°, 60°) 

A rectangular SIC-range estimates the range of successful convergence 
and can be used for the design of a reliable recognition system as 
described next. 

Required initial configurations 

On the one hand, the computational cost of recognition is proportional to 
V·S, calling for small values of V (number of view points) and S (number 
of view axis rotations). On the other hand, V and S must be sufficiently 
large to ensure reliable recognition. This section proposes a method with 
which to define a set of required initial configurations (RIC) such that 
reliable recognition is obtained at minimal cost. 

Considering an object with an hypothetical uniform and rectangular 
SIC-range given by SIC(  φ0 ,  Δω 0 ), reliable recognition is obtained if the 
covering of the (φ, θ, ω) space with the set of RIC is dense enough to fulfill 
the conditions of a maximum spacing in rotation angle 

    
360 °

S
< Δω 0  (4.2) 

and a maximum spacing in zenith angle 

  φ
* V( ) < φ0  (4.3) 

The function     φ
* V( ) is a basic function that relates the number of evenly 

distributed points on a sphere with their maximum spacing. More 
formally, it expresses the maximum angle distance of any point on the 
sphere to the set of V points distributed on it. Some values of   φ

* V( ), 
computed from a distribution obtained by a point repulsion algorithm 
[RUSb], are reported in Figure 4.9. 
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Figure 4.9 Maximum angular distance   φ
* V( ) to V view points evenly distributed on a 

sphere 

Applying now the above conditions (4.2) and (4.3) now to the SIC-ranges 
of the toy objects, example choices of V and S are obtained as follows: 

 duck and swan:  SIC(40°, 90°) → V = 12, S = 4 

 fish:    SIC(35°, 60°) → V = 14, S = 6 

In a further step, the computational cost V·S is minimized by varying the 
parameters   Δω 0  and   φ0 . 

With these two conditions, the cost expresses as function of   Δω 0  and 

  φ0  as 

    
C φ0 , Δω 0( ) = const ⋅

360 °
Δω 0

⋅φ*−1
φ0( ) ≈ S ⋅V , (4.4) 

where   Δω 0  and   φ0  are bound by the object specific functions   Δω min φ( ) of 
Figure 4.8. Under this constraint, optimizing the costs leads to an optimal 
solution     Copt φ0 ,Δω 0( ). Figure 4.10 draws the cost function     C φ0 , Δω 0( ) 
together with the   Δω min φ( ) function of the duck object. 

Reliable recognition is ensured for every pair (  φ0 ,  Δω 0 ) with a smaller 

  φ0  or   Δω 0  than the frontier delimited by  Δω min φ( ). The minimal cost is 
obtained for     Copt φ0 ,Δω 0( ) = (50°, 60°) corresponding to the RIC defined 
by V = 7, S = 6. 
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Figure 4.10 RIC assessment for duck object 

Such RIC are defined individually for every model. When the ICP 
algorithm matches a test with a model it uses the corresponding RIC 
setup defined for the model. 

Note that, the obtained numbers V and S are only estimates since the 
SIC-range elaboration has only been performed with one single view per 
object. Section 4.6 presents recognition experiments on a scene database 
in order to verify the performances of the designed setup. 

Optimal model-to-test distance 

The optimal size of the radius r of the sphere on which the view points are 
placed is inspected now. In the implemented system, r is equal to the 
circumradius   rc  of the model. 

The results in Figure 4.11 show that if the test is placed too far away 
from the model, the SIC-range of ω quickly decreases to zero. Because 
only few couplings are established in the first iteration, the error 
minimization results in bad rigid transformations. 

In order to keep the recognition cost low the number of view points 
should be low. Therefore, the zenith angle  φ0   for which the SIC-range of 
ω reaches the minimal size  Δω 0  should be large. Setups with   r ≤ rc  are 
therefore better suited since the SIC-range of ω drops to zero for a higher 
φ.  
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Figure 4.11 SIC-range of ω for different model-to-test distances 

4.5.4 Search space pruning 

If precise matching is requested, the ICP algorithm has to perform several 
iterations (about 30) for every initial configuration. Actually, precise 
matching is only needed for the correct model. Therefore, the search 
space containing all ICP matching iterations can be pruned and only few 
iterations are performed in the first step for each initial configuration. 
The initial configurations of the models which show promising matching 
are used for further matching iterations to finish the search for precise 
matching. 

Promising configurations can be recognized with the quality measure 
defined below. A termination criterion based on the error change, allows 
the termination of the ICP algorithm as soon as it has reached a 
minimum. 

Matching quality 

Since the ICP matching algorithm minimizes the coupling error d of the 
closest points, it seems obvious to use this measure to qualify the 
matching. But, experiments have showed that this criteria is often 
insufficient to discriminate bad and good matchings. For example, the 
mean μ of the coupling error d for the two matchings shown in 
Figure 4.12 differs only by 20%, which does not really reflect the large 
difference between the two cases where the gray object is in two 
completely different configurations. 
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Figure 4.12 Distance histogram of closest points for two matching cases 

The square distance histograms corresponding to the two matches show 
that the distributions of the square distances differ even if the mean 
values do not. Zhang proposed the inclusion of the deviation of the 
coupling distances to qualify a matching [ZHA]. For the cases shown in 
Figure 4.12, the deviation of the square distances is twice as large as for 
the bad cases compared to the good ones. 

Therefore, a new matching error ε is defined as the sum of the mean 
and the deviation of the square coupling distances. 

    

μ =
1
N

d k
2

k =1

N

∑

σ =
1

N − 1
d k

2 − μ( )2

k =1

N

∑
ε = μ + σ

 (4.5) 

Cases with low error ε will indicate a promising matching and allow the 
pruning of the search space. The next section shows that promising initial 
configurations which lead to successful matching can be recognized after 
few iterations when observing the new quality measure. 

Convergence quality 

Actually, it is not necessary to do the same number of iterations for all 
defined initial configurations. The iterative matching can be abandoned 
as soon as the error ε changes only a little and the ICP algorithm has 
reached the minimum (see Section 3.6). 
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In the next experiment, the ICP algorithm matches the test, which is 
placed at several initial configurations, with the corresponding model. 
The iterations are stopped if   ε i−1 − ε i < δ  is satisfied. When all 
configurations are checked the one with the lowest error ε is selected for 
more iterations to obtain precise matching. 

Figure 4.13 shows that an increase of the error change threshold δ 
reduces the mean number of performed ICP iterations. If the error 
change threshold δ is set to high, the ICP algorithm will not reach the 
minimum for all initial configurations. A bad initial configuration which 
by chance has the smallest error and will be selected wrongly. 
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Figure 4.13 Fast initial configuration selection with error change 

The mean number of needed iterations has already dropped significantly 
for a small error change threshold. This allows an increase in recognition 
speed of up to a factor of six to be gained without the risk to select a 
wrong initial configuration. 

4.5.5 Recognition acceleration 

At a first glance the necessity of multiple initial configurations seems to 
introduce many overheads. But since the range of successful convergence 
for the ICP algorithm is relatively large, the number of initial 
configurations can be kept low. Also, the search can be pruned by using 
an appropriate matching quality measure as shown in the previous 
section. 



 Object recognition 

 81 

Other advantageous characteristics of the ICP matching algorithm, 
such as fast convergence after few iterations and low sensitivity to data 
reduction, are presented here and can be used to reduce the recognition 
time. 

Coupling weights 

As introduced in Section 3.5.3, the possibility exists to weight the 
couplings established by the closest point search for the matching error 
minimization. Here, this feature is used to accelerate the convergence of 
the ICP algorithm. The following weight function w k dk( ) is proposed (see 
Figure 4.14). 

1
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1 4

outlierinlierprecise

  w k dk( )
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ε

 

Figure 4.14 Weight function for closest point couplings 

The above weight function attributes different weights   w k to every 
coupling according to the size of the quotient of the coupling distance  d k  
and the matching error ε defined in (4.5). Actually, the error ε calculated 
at the previous iteration is used. This function omits outliers and 
attributes a low weight to points which already have a near closest point. 
This results in a fast convergence since points which are still far apart get 
more influence and outliers do not disturb the matching error 
minimization. 

As the matching error ε gets reduced after every iteration the weight 
function adapts itself and inliers are still detected correctly when the 
matching gets more precise. 

The thresholds which separate the classes of the precise, inlier and 
outlier couplings in the weight function are determined empirically. 
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Other authors proposed soft transitions from one class to another and use 
fuzzy functions [KRE]. 

Figure 4.15 shows the evolution of the matching error over several 
iterations for a typical ICP matching converging successfully. The 
introduced weight function allows the reduction of the number of 
iterations needed to reach a minimum error by 50%. 
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Figure 4.15 Matching acceleration with weighted couplings 

Even if the convergence of the ICP algorithm using weighted couplings 
can not be proven (see Section 3.5.4), the experimental results show 
convergence. Since the ICP algorithm reduces the matching error, the 
outlier threshold of the weight function of Figure 4.15 decreases in 
general between two iterations. For this reason, most outliers never 
become inliers and the weighted ICP algorithm is well-behaved [ZHA]. 

Surface subsampling 

Further reductions in calculation time is possible by reducing the number 
of points representing the surfaces (see Section 3.4.3). The next 
experiments with a 2D puzzle piece show that the ICP algorithm still 
converges successfully even for large subsampling factors. 
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Figure 4.16 Subsampled puzzle piece 

Two identical pieces of Figure 4.16 which have the same subsampling 
factor are matched from different initial configurations. One piece is 
rotated at several angle steps around the other. The final matching error 
for all initial configurations is plotted in Figure 4.17. 
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Figure 4.17 Matching errors for different reduction factors 

The promising initial configurations can only be recognized reliably if 
they have a significantly smaller matching error than the other 
configurations. Figure 4.17 shows that for the reduction factors 1, 2 and 4, 
the first three initial configurations, for which the ICP algorithm 
converges successfully, have a much smaller error margin than the other 
configurations. A reliable selection of the promising initial configurations 
is no longer possible for larger reduction factors. 

The computation cost of the ICP algorithm decreases linearly with the 
product of the test and model subsampling factors. The implemented 
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object recognition system reduces the test surface by a factor of two. The 
full surface resolution is only used for precise matching. 

4.6 Recognition results 

This chapter presents the results of several experiments performed with 
the proposed object recognition setup and ICP enhancements presented 
so far. 
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To verify the validity of the selection of the set of RIC according to 
Section 4.5.3, a series of recognition experiments is performed. It 
involves the three toy object models known as duck, fish and swan and 
ninety tests each containing a view of the toys in an arbitrary pose (see 
Figure 4.18 for some examples). 

 

Figure 4.18 Subset of ninety test configurations 

The recognition experiment evaluates the recognition performance as a 
function of the sets of RIC characterized by a different numbers of view 
points V and view axis rotations S. A specific set of RIC is run three times 
with all tests and the mean of the recognition results is calculated since 
the view point distribution is initialized randomly. 

An object is recognized if the matching error ε of a test with a model 
falls below a given threshold. Since this threshold is low and based on 
geometric correspondences there are no false classifications (confusions) 
at all. The result is thus either correct recognition or rejection. 

Figure 4.19 compares the RIC setups characterized by (V, S) values. 
Solid bars represent the recognition rate obtained for the ICP algorithm 
launched from different initial configurations while the gray curve reports 
the computational cost which is proportional to V·S. 
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Figure 4.19 Recognition performance and cost for different setups 

Maximal recognition rate of about 97% is reached for a set of RIC 
(V, S) = (12, 8). But, similar recognition rate is already obtained at less 
cost for (V, S) = (12, 4). By looking at the setups (V, S) = (8, 8) and 
(V, S) = (12, 4), it can be seen that a RIC with a higher number of view 
points obtains similar performance with much less view axis rotations. 
The obtained experimental results confirm the design rules of 
Section 4.5.3. 

Almost similar recognition performance is obtained when the closest 
point couplings are weighted using the function of Figure 4.14. However, 
the number of performed iterations is reduced by about 40%. 

4.7 Demonstration platform 

The programming of a robot task in a virtual reality robotics environment 
(VRRE) is selected to demonstrate the successful working of the 
developed hybrid recognition system. 
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4.7.1 Introduction 

The programming of a robot is often a tedious task which can be greatly 
improved in user friendliness by using virtual reality interfaces. An 
approach using virtual reality has been selected to overcome this 
problem. The description of the robot motion is done interactively in a 
virtual space representing the real world setup [NATa]. This allows an 
off-line programming and verification of the robot tasks. 

A prerequisite for the success of this approach is a faithful 
correspondence between the virtual and real worlds. It means that 
changes in the real world must be fed back into the virtual environment 
by means of sensing devices. If a 3D vision system continuously updates 
the virtual world or part of it, the operator doesn't need to do it 
laboriously from a camera image of the real world. 

To implement this vision task the above hybrid 3D vision system is 
proposed and implemented for the following assembly task. A robot has 
to be programmed to assemble the three tape dispenser parts shown in 
Figure 4.20. A 3D scanner and a video camera observe the working 
environment. The hybrid 3D vision system recognizes the objects and 
constructs a virtual world representation of the scene. This virtual world 
now allows the operator to program and verify the assembling task 
without having to move the real robot. Once the task is programmed it is 
sent to the real robot which executes it. 

 

Figure 4.20 Scotch dispenser parts to be assembled 

4.7.2 Scene acquisition 

The object surfaces are acquired by a 3D scanner called BIRIS and 
produced by VITANA. This 3D scanner belongs to the class of laser line 



Geometric point matching of free-form 3D objects 

 88 

triangulation scanners (see Section 2.4.1). It delivers a one-dimensional 
range profile. To obtain a complete range image the sensor is moved 
along an axis perpendicular to the profile. The successive measurements 
form a 2D range image which allows direct access to the 3D geometry of 
the scene. Figure 4.21 shows a range image of three tape dispenser parts 
acquired with the BIRIS range finder. 

 

Figure 4.21 Range image of BIRIS scanner 

4.7.3 Hypothesis generation 

The hypothesis generation module uses the ICP algorithm together with 
the recognition setup of Section 4.5 to recognize the object type and pose. 
The hypothesises are verified afterwards by using the intensity image. 

This section presents and discusses the SIC-maps of the scotch 
dispenser parts. These maps are used to build an optimal recognition 
setup (see Section 4.5.3) 

SIC-maps of scotch dispenser parts 

The SIC-maps are calculated for three different views of every object of 
Figure 4.20. For every initial configuration the ICP algorithm is launched, 
running enough (40) iterations to ensure convergence. An initial 
configuration is labeled as successful if the final matching error falls 
below a fixed threshold. An appropriate threshold is simply derived from 
the observation of the matching behavior of a number of cases. For this 
experiment no data reduction or coupling weighing is performed. The test 
shapes consists of about 150 points whereas the models contain around 
400 points. 
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The resulting SIC-maps of the three scotch dispenser parts are 
presented in Figure 4.22, Figure 4.23 and Figure 4.24 for the zenith angle 
ranging from 0° to 80° at steps of 10°. 

 

Figure 4.22 SIC-maps for three views of the scotch base 

 

Figure 4.23 SIC-maps for three views of the scotch cover 
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Figure 4.24 SIC-maps for three views of the scotch tape 

SIC-maps discussion 

Compared to the SIC-maps of the toy series in Figure 4.7 which were 
characterized by an approximately zenith centered SIC-range, the new 
SIC-ranges are characterized by a strong off-zenith dominance. 
Comparing for example the three scotch base SIC-maps (see Figure 4.22), 
the dominant part of the SIC-range is found respectively in the NW, SW 
and SE regions on the SIC-map. The SIC-maps for the other two scotch 
parts show similar behavior. 

The second observation refers to the inter-object and intra-object 
variability. If intra-object variability is smaller than inter-object 
variability, it would be expected that some model specific features 
existed. All results obtained in this series reveal a comparable intra-object 
and inter-object variability. Thus, there are no specific features that could 
be used to improve object recognition. 

Notice here that the scotch tape displays a very dark SIC-map and 
seems therefore to behave differently. This is in fact not the case because 
the darkening of the SIC-map has a different cause, namely the existence, 
with this scotch tape, of two optimal matching poses due to the object 
symmetry. 

Optimal recognition setup 

All measured SIC-maps exhibit a rather large SIC-range. To give a partial 
idea of its size, again the notation of a rectangular SIC-range as defined in 
(4.1) is applied. The rectangular SIC-range does not necessarily have to be 
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centered at the zenith of the SIC-map. Therefore, a manually estimated 
range which is roughly valid for all scotch parts is SIC(40, 60). In order to 
obtain successful recognition for a maximum number of different views, 
12 view points and 6 rotations per view point are necessary as RIC in the 
recognition setup. 

4.7.4 Robot assembly 

The object recognition provides the precise poses of the database models 
in the real world scene. Using the generated object hypotheses, the scene 
can be modeled and continuously updated on a virtual world. Again the 
same model representations from the model database can be used, since 
VR modelers can work with colored triangle meshes. 

Task programming 

The recognized parts appear in the virtual world and allow the user to 
program an assembly task. Figure 4.25 shows two views of the assembly 
task programmed in the virtual reality environment. 

 

Figure 4.25 Robot task programming in the virtual world 

Here, the robot has to grasp first the base part of the dispenser and to 
place it on an assembly template. Then, the tape roller is inserted into the 
base part and finally the cover closes the tape dispenser. A special gripper 
helps to grip the objects in their holes [NATb]. The real robot is only used 
for the final task execution. This saves energy and robot resources. 
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Task execution 

Once the programmed task has passed verification by simulation in the 
virtual world it is downloaded via a serial link to the real robot. The robot 
now executes the same task as shown in Figure 4.26. 

 

Figure 4.26 Robot executing the task 

4.8 Conclusions 

This chapter investigates the application of geometric point matching to 
object recognition. There are conclusions to be drawn on several aspects. 

The proposed initial configurations for the poses of the test and 
model surfaces allow the successful application of the ICP algorithm 
without having a priori knowledge about the test pose. 

Several experiments establish the quantitative nature of the 
dependence of the recognition performance on the selection of the 
number of initial configurations. SIC-maps are proposed to describe 
these dependencies. They are presented and analyzed for several free-
form objects. The knowledge of the object SIC-maps allows a recognition 
system to be designed with an optimal number of initial configurations. If 
several models are involved in the recognition process, then it is 
advantageous to establish an optimal number of configurations 
separately for each model. Recognition experiments on a large number of 
scenes confirm the validity of the system design rules. 

A reliable matching quality measure and an ICP termination criterion 
observing the error change of successive iterations allow the 
minimization of the number of iterations needed to search for the correct 
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model. The recognition is accelerated furthermore by data subsampling 
and weighted couplings. 

The implemented object recognition system is successfully tested on 
free-form toys and in the frame of an assembly task of tape dispenser 
parts, where vision helps to update the virtual world by recognition and 
localization of the parts in the real environment. The vision algorithms 
can directly use the CAD models used for the virtual world construction. 

Finally, the experiments performed with the system show the very 
appealing advantages of the applied methods: to treat free-form objects 
and to integrate them well into virtual reality environments. 





 

 

Chapter 5 

Object digitizing 

Object digitizing aims on building a 3D representation of a real world 
object. It is characterized by the registration of partial views of an object 
surface. Once the different surface parts are aligned, they are fused into 
one common representation for the whole object surface. 

Geometric point matching is proposed in this work to register the 
different surface scans. In contrast to the object recognition task the 
matched surfaces do only partially overlap. 

The presented work has been published in [HUGe] [SCHe] [SCHf] 
[SCHk]. 

5.1 Introduction 

Digitizing systems scan an object from different points of view and 
integrate the different acquisitions into one representation. They allow a 
virtual representation of a real world object that can be imported in CAD 
systems to be obtained. 

Digitizing systems 

The increasing use of virtual object representations for various 
applications creates a need for fast and simple object digitizing systems. 
Applications such as teleshopping, rapid prototyping and object 
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recognition need a virtual representation of the 3D geometry of real world 
objects. 

The following object digitizing approaches exist: 

CAD modeler: Objects are constructed within a modeler 
combining different geometric primitives such as 
boxes or spheres. Usually the data points are 
entered with the help of a visual graphic interface. 
The object dimensions are measured manually or 
with contact probes. 

3D scanner: 3D scanners give direct access to the geometric 
information of object surfaces. They allow an 
accurate and dense digitizing of an object surface 
at low cost and high speed. Special software is 
needed in order to combine the different object 
scans. 

3D scanners get used more and more since model construction with a 
modeler is a quite tedious task especially for objects of free-form shape. 

However, since 3D objects self occlude, one acquisition captures only 
a subpart of the entire object surface. Therefore, a need to combine 
several scanner views into one unique object representation exists. The 
combination of the different acquisitions is straightforward if the object is 
moved into a well known coordinate system like a turntable: the relative 
transformation between the pose of two acquisitions is known. However, 
complex positioning systems are needed to sense the complete surface of 
an object and to keep track of its pose at the same time. 

Proposed solution 

To avoid the need for positioning systems, this work proposes a digitizing 
system which registers object views from unknown poses. The idea is to 
match the surfaces based on the sole knowledge of their geometric 
measurements. 

The presented digitizing system captures views of a real world 3D 
object and then registers and integrates them into a virtual model 
representation. The following steps have to be performed in order to 
combine the acquired surfaces: 
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– An object to be digitized is placed in different unknown poses on the 
acquisition field. The visible surface is sensed by a 3D scanner. Every 
acquisition is represented by a triangle mesh (see Section 2.5). 

– The different surface measurements now have to be registered. An 
interactive interface allows the operator to roughly align the two 
surfaces in 3D space. Then, the precise surface registration is 
calculated by the ICP algorithm. 

– In the last step called mesh fusion, the aligned triangle meshes are 
combined into an unique triangle mesh representing the entire object 
surface. 

The following sections will focus on the registration task whereas the 
mesh fusion has been presented in [SCHe] [SCHf] and [JOS]. 

5.2 Digitizing system architecture 

The digitizing system consists of two main blocks: view digitizing and 
view integration (see Figure 5.1 for an overview). The view digitizing 
block generates a virtual view of the observed object surface. The view 
integration block iteratively integrates each new virtual view in the virtual 
model under construction. This allows an incremental construction of the 
virtual model. 

The view digitizing block measures the points of the visible object 
surface, filters the noise present in the measured data and triangulates 
the surface points. The resulting output is a triangle mesh representing a 
virtual view of the real object. The implementation of the modules used 
for view digitizing has been discussed in Section 2.5. 

The view integration block combines the virtual views and builds one 
virtual object becoming an entire model of the real object. The geometric 
transformation between the reference frames of a new acquisition and the 
virtual model is not known a priori and determined by the view 
registration block. The mesh fusion module combines the registered 
triangle meshes into a new global mesh covering the union surface of the 
single meshes. 

The view registration block aligns the different views combining 
interactive rough registration and automatic registration. The interactive 
rough registration provides the matching estimate used for the automatic 
registration which is performed by the ICP algorithm. Since no external 
measurements of the object pose are available, the automatic registration 
system relies on the object surface geometry in order to register it with 
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the virtual model. This assumes that the virtual model and the new object 
view have at least some surface area in common which allows 
correspondences between them to be established. 

acquisition filtering

interact. rough  
registration

automatic  
registration

view  
triangulation

mesh fusion

virtual 
view

virtual 
model

view digitizing

view registration view integration

 

Figure 5.1 Digitizing system architecture 

5.3 Comparison with other work 

Similar digitizing systems have been presented by [TUR] [SOUc] [PIT] 
[HILa]. All of them use modified versions of the ICP algorithm in order to 
register the different surfaces. However, they differ significantly in how 
they fuse the registered object views. Some systems keep all data points in 
the overlapping area and retriangulate the mesh. Other authors propose 
the removal of one of the overlapping part (redundant data) and the 
fusion of the remaining meshes (see [HILb] and [SCHf] for an exhaustive 
comparison). 

The system presented in this work belongs to the second group. It 
erodes the overlapping surface area of one surface and links the 
remaining mesh with the other surface. The proposed mesh fusion 
algorithm benefits from the closest point relationships established during 
the geometric point matching [SCHf]. There is no need to run an extra 
routine to erode overlapping surfaces and to detect the surface frontiers 
as is done in other work [PIT] [TUR]. 
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Most digitizing systems employ a graphic interface which allows a human 
operator to enter a pose estimate to obtain successful convergence for the 
ICP algorithm. So does the system presented here. Human perception 
easily identifies corresponding surface parts for any object type and 
shape. As far as we know, there is currently no digitizing system doing the 
surface matching completely automatically. 

Another goal is to improve the surface registration of surfaces where 
the simple geometric closest point criterion fails to establish reliable 
correspondences. Several authors proposed the extension of the ICP 
algorithm to integrate additional features, for example surface color or 
surface orientation in the closest point search [JOHa] [MAR] [GODb] 
[FELa] [GODa] [STOa]. Here, a flexible closest point search is proposed 
which can use several features such as geometry, color and surface 
orientation in any combination (see Section 3.4.2). 

In contrast to other work [FELa], the closed-form error minimization 
based on quaternions (see Section 3.5) is maintained when the surface 
orientation is used in the closest point search. Although convergence can 
not be proven yet, empirical investigations show successful registration 
results. 

5.4 User interfaces 

All modules of the digitizing system can be controlled from the same 
graphic user interface shown in Figure 5.2. It contains menus for the 3D 
scanner control to import the acquired object scan views and to activate 
the different view integration modules of the digitizing system. 

The acquired data is rendered on a fast 3D graphics work station 
which updates the virtual scene at screen refresh rate. Furthermore, the 
computer monitor can work in stereo mode and be viewed through stereo 
glasses. This gives improved depth cues and allows the surfaces to be 
aligned better. 

The pose of the surfaces can be changed in all degrees of freedom of 
translation and rotation with a space mouse (see Figure 5.2). 
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Figure 5.2 Graphic and haptic interfaces of the digitizing system 

A shell window reports the matching errors and the amount of surface 
overlap. This allows the operator to decide if further matching is needed 
or if the desired matching precision is reached. 

5.5 Interactive rough registration 

The ICP algorithm which registers two surfaces needs an approximate 
match in order to converge successfully (see Section 3.7). There are 
various reasons why the ICP algorithm is not applied to an exhaustive 
search among several initial configurations. 

First, the surfaces contain hundreds of thousands of data points since 
precise matching is needed and therefore the investigation of several 
initial configurations would take too much computation time. 

Secondly, the initial configurations defined for the object recognition 
task assume that one surface is an entire subset of the other (see 
Section 4.5.1). This is not the case in object digitizing. 

Alternative methods use extracted features or markers in order to 
align two surfaces. Feature extraction may fail when dealing with free-
form objects (see Section 2.2.2). Markers modify the object appearance 
and disturb the digitizing of objects with color texture. 

Human perception easily identifies the corresponding regions of two 
surfaces. The presented interactive graphic interface permits a human 
operator to enter a pose estimate for two surfaces. However, even 
sophisticated object rendering and pose manipulation hardware as 
presented in Section 5.4 is not sufficient to align the object surfaces 
precisely. In fact, there is no measure apart from the visual feedback 
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indicating the quality of the surface matching. Therefore, the interactive 
interface only provides a rough pose estimate to be used as an initial pose 
for the automatic precise registration performed with the ICP algorithm. 

Figure 5.3 shows an example of two roughly aligned surfaces used as 
initial configuration for the automatic registration. 

 

Figure 5.3 Two roughly aligned surfaces representing views of a duck toy 

5.6 Automatic registration 

Using the available pose estimate, the ICP algorithm finalizes the 
registration of two surfaces at high precision. 

Figure 5.4 shows several iterations of the automatic registration 
started from the surface configuration shown in Figure 5.3. 

 
Figure 5.4 Iterations of the geometric point matching 

The object views to be assembled need common surface regions with 
enough geometric structure in order to allow the automatic matching to 
converge to a correct solution. For two neighbor views, 30% to 50% of 
common surface has been observed to be an adequate amount. 
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The next sections describe the implementation details of the ICP 
algorithm adapted for automatic registration. 

5.6.1 Surface overlap detection 

As the ICP algorithm is applied to two surfaces which only partially 
overlap, each surface contains data not present in the other and 
convergence is often unsuccessful. The ICP algorithm needs to be 
modified as proposed in [TUR] [GODb] [ZHA] and implemented as 
follows. 

In order to couple only the surface areas which potentially overlap, 
closest points which are too far apart are not considered to be 
corresponding points and are marked as invalid. They have no influence 
on the matching error minimization (see Figure 5.5). 

P
overlapping  closest point
closest point is too far apart 

X

 

Figure 5.5 Closest points coupling for partially overlapping surfaces 

This removal corresponds to a weighing of the closest point couplings as 
defined in Section 3.5.3. The following function w k dk( ), which uses the 
geometric coupling distance  d k  as input, attributes a weight to every 
coupling: 

    
w k dk( )=

1 dk < τ g

0 otherwise
⎧ 
⎨ 
⎩  (5.1) 

Closest points with a coupling distance  d k  smaller than  τ g  belong to the 
overlap area. If   τ g  is set too large, surface areas which do not correspond 
will be considered as overlap. If  τ g  is too small, no couplings remain at 
all. 

In order to select a reasonable value for  τ g , the overlap threshold  τ g  
is adapted during the ICP matching as the corresponding areas are 
approached. It is set to a relatively large value at the beginning of the 
matching when the two surfaces are far apart and is then successively 
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reduced for the following iterations. As the surfaces become 
superimposed the value of  τ g  is lowered to the sampling interval of the 
surface points. Figure 5.6 shows some typical values of   τ g  over several 
iterations. 

geometric overlap threshold
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Figure 5.6 Typical values of overlap threshold over several ICP iterations 

Note that, there is a link between the value of  τ g  and the kD tree search. 
As only points which are closer than  τ g  are considered for the error 
minimization, the fast closest point search done with a kD tree (see 
Section 3.4.3) can be directly initialized with Dinit = τ g . Since τ g  is 
relatively small the recursive search using the kD tree is accelerated 
because few branches are inspected. 

5.6.2 Precise closest point 

In order to achieve the precise registration of two surfaces, a high point 
density on both surfaces would be needed. Since the input of the 
presented system is a triangulated surface, the ICP algorithm has access 
to the continuous surface geometry and not only to discrete surface 
points. Therefore, the vertices of one surface can be coupled with points 
on the triangles of the other surface as defined in Section 3.4.5. The fast 
closest point search using kD trees can be extended to handle triangles 
(see Section 3.4.5). 
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5.7 Multiple feature matching 

The coupling between two surfaces performed by the closest point search 
is a key operation in the ICP algorithm. For some objects, the available 
surface geometry information is not sufficient to obtain a correct 
matching. Additional features as color or surface orientation are 
considered to establish the coupling. 

An appropriate feature distance is defined for the color and 
orientation feature in Section 3.4.2. The different features are added to 
the coupling distance d (see (3.15)) and used for the search of the point 
which is closest to all features. 

Feature range normalization 

Since different features do not necessarily have the same value range, 
they need to be normalized to a common range. Otherwise one feature 
may have more influence on establishing the couplings than others. This 
section presents a method to select the normalization factors α g ,   α n  and 

  α c  of (3.15). 
The basic idea is to normalize the different feature distances using the 

corresponding overlap threshold as defined in (5.1) for the geometric 
distance. This method has the advantage that the number of adjustable 
parameters used in the object digitizing system is kept at a minimum. 

Therefore, an overlap threshold is introduced for every feature and 
adapted during the ICP iterations. Two surface points are considered to 
have the same orientation if the Euclidean distance between the 
corresponding normal unit vectors is below  τ n . The threshold   τ n  is easily 
derived from the corresponding angle difference of two normal vectors. 
Two surface points are considered to have the same color if the Euclidean 
distance between the corresponding color vectors is below   τ c . The 
threshold   τ c  is expressed by the maximal difference per color component 
measured as percentage of the component range (255 for this 
implementation). 

Typical values, expressed in degrees and percentage, defining the 
overlap thresholds for orientation and color are plotted in Figure 5.7. 
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Figure 5.7 Typical values of overlap thresholds for color and orientation 

If the normalization factors  α g ,  α n  and  α c  are defined by 

    α g = τ g ,  αn = τ n and α c = τ c , (5.2) 

the overlap distance ranges from 0 to 1 for every feature and the weighing 
function of (5.1) becomes 

    
w k dk( )=

1 dk < 3
0 otherwise

⎧ 
⎨ 
⎩  (5.3) 

where   d k  corresponds to the normalized total coupling distance of (3.15) 
integrating all three features. Actually, in order to strictly ensure that 
every feature is in the 0-1 range the value 3 in (5.3) should be replaced by 
1. However better results have been observed with a factor corresponding 
to the number of features used in  d k  (here 3). 

kD tree with multiple features 

The kD tree provides a fast closest point search for feature spaces of any 
dimension. It uses an Euclidean distance measure to find the point with 
the smallest distance for all features. Therefore, an Euclidean distance 
measure has been defined for the color (3.12) and the surface orientation 
feature (3.13). If all features are used, k equals nine since every feature is 
composed of three coordinates. 

Convergence behavior 

The aim of the following experiment is to measure the gain in 
convergence speed when using surface orientation or surface color for the 
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closest point search. Furthermore, the overlap detection is integrated in 
the ICP algorithm. Note that the matching error minimization still uses 
the method based on quaternions and finds the optimal rigid 
transformation which only reduces the geometric error. 

The ICP algorithm matches the two colored surfaces of a toy rabbit 
shown in Figure 5.8. The evolution of the matching error e, equal to the 
geometric coupling error, is plotted in Figure 5.9. 

 

Figure 5.8 Test and model surfaces of a colored toy rabbit 
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Figure 5.9 Convergence of ICP using multiple features 

The ICP algorithm did not converge successfully if the geometric feature 
was not included in the coupling distance. Figure 5.9 shows that the more 
surface features are used the less iterations are needed for the matching 
to converge since the ICP establishes better couplings. If all three features 
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are used the number of iterations needed to reach the minimum is 
reduced by a factor six. 

Although the convergence of the ICP algorithm can not been proved if 
the couplings are weighted or the surface orientation is used for the 
closest point search (see Section 3.5.4), the experiments in Figure 5.9 
show successful convergence. However, the ICP algorithm does not 
converge monotonically to a minimum any more. 

A further analysis of the results of Figure 5.9 shows that the absolute 
execution time of the ICP algorithm does not always decrease when using 
several features as shown in Figure 5.10. 
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Figure 5.10 Absolute execution time of ICP using multiple features 

An explanation is that the kD tree is only efficient for features which vary 
a lot and allows the early exclusion of most of the search candidates. 

This is not the case for the color feature which has been quantified 
into few levels by the used framegrabber and also the rabbit in Figure 5.8 
contains few really different colors. The total ICP execution time is about 
double if color is used even if the number of performed iterations is 
halved. The normal feature does not significantly improve the execution 
time either although it needs about a third of the iterations. 

Finally, even if the number of iterations is reduced the execution time 
is hardly improved. 

Optimal overlap threshold size 

The following experiment investigates the variation of the execution time 
when changing the size of the overlap thresholds. 
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Here, the closest point distance includes the geometric and the 
normal feature. The ICP algorithm matches the two surfaces shown in 
Figure 5.8. Note that in this experiment, the size of the overlap thresholds 
is not changed during the ICP iterations. 

Figure 5.11 plots the different matching errors for different values of 
the geometric overlap threshold  τ g . The normal overlap threshold   τ n  is 
fixed to 40 degrees. A matching error below 10 mm2 corresponds to 
successful matching. 
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Figure 5.11 Matching convergence for different geometric thresholds 

No successful matching is obtained for a large  τ g . As the feature distances 
are normalized by their corresponding overlap threshold, the normalized 
geometric distance is very small compared to the normalized normal 
vector distance. This results in the closest points couplings being 
established for points with similar normal orientations even if they are far 
apart from the point of view of geometry. 

The convergence becomes faster and converges successfully when 
using a smaller τ g . Best results are obtained for a geometric threshold 
which corresponds to the initial distance of the two shapes shown in 
Figure 5.8. If the threshold  τ g  is reduced further, no couplings are 
established any more since the closest point search can not find any 
candidate in the search range. 
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These results lead to the following practical rules for the determination of 
the optimal size for the feature overlap thresholds: 

– Choose the smallest geometric overlap threshold   τ g  possible and 
lower it as the two shapes approach each other. This ensures fast 
convergence. 

– The thresholds   τ n  and  τ c  for the other features should be larger than 
the variations due to the 3D scanner and framegrabber noise. An 
upper optimal limit has to be established by running several 
experiments, where lower thresholds result in the better use of the 
feature discrimination capability in the closest point search. The ICP 
matching converges faster, since fewer kD tree branches are 
inspected. 

5.8 Advantages of multiple feature ICP 

In the presented digitizing system an operator roughly registers two 
object surfaces. The ICP algorithm needs this estimate for successful 
convergence. The larger the SIC-range the rougher the pose estimate can 
be. 

The following sections inspect the range of successful convergence of 
the ICP algorithm integrating several features such as color, texture and 
orientation. 

5.8.1 Comparison of convergence qualities 

Again the dedicated setup presented in Section 3.7.1 is used to measure 
the SIC-range. The results are plotted in a SIC-map showing the domain 
of successful initial configurations. Such SIC-maps are established for 
several surfaces and the closest point distances including the normal and 
color features. 
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Figure 5.12 presents the SIC setups for three experiments with the test 
shapes in the zenith configuration. 

– Figure 5.12a shows the matching of a colored view P with a complete 
colored model X of a toy rabbit. Such configurations are encountered 
in object recognition or object inspection. 

– Figure 5.12b shows the alignment of two partially (50 %) overlapping 
object views P and X. This disposition is observed in object digitizing 
where a complete model is assembled out of several views. 

– Figure 5.12c shows two identical colored ball surfaces P and X. 

z

x
y

a b c
test, P

model, X

 

Figure 5.12 SIC-map setups to test different coupling distances 

The resulting SIC-maps for the setups shown in Figure 5.12 are presented 
in the following three figures. The zenith angle is sampled at steps of 20 
degrees. 
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Figure 5.13 SIC-maps for experiment a in Figure 5.12 

 

Figure 5.14 SIC-maps for experiment b in Figure 5.12 



Geometric point matching of free-form 3D objects 

 112 

 

Figure 5.15 SIC-maps for experiment c in Figure 5.12 

The resulting SIC-maps show that the range of successful convergence is 
considerably improved in all experiments when including color and 
normal features in the closest point search. 

The ICP algorithm does not converge at all to the correct pose for the 
setups shown in Figure 5.12b and Figure 5.12c if only the geometric 
distance is used. Only the surface normal information permits a correct 
surface coupling and registration of the two object views of Figure 5.12b. 

Since the surface in Figure 5.12c is invariant under rotation only the 
color information allows the color spots to be correctly aligned. 

Table 5.1 gives an overview of the results obtained for the different 
features. The best matching results are obtained if all three features are 
combined. 
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 exp. a exp. b exp. c 

geometric poor none poor 

geometric and normal good good poor 

geometric and color fair none good 

geometric, normal and color best best good 

Table 5.1 Convergence quality for different experiments of Figure 5.12 

5.8.2 Automatic pose estimate 

If an object surface has different color regions, a closest point coupling 
based exclusively on the color feature can lead to a first pose estimate. 

Figure 5.16 shows an example of two partially overlapping views of a 
colored toy rabbit. The two views are first in a random pose. Then, a first 
ICP matching is performed using only the color feature to establish 
correspondences. The matching error minimization uses these couplings 
to match the two surfaces. The resulting match is not very precise but can 
be used to launch the ICP algorithm again using geometric and normal 
features this time. The final matching is successful. 

Several experiments have showed that this approach works only in 
some exceptional cases and can therefore not replace the human operator 
entering a rough pose estimate. 

geometric&normal

ICP ICP

acquired surfaces rough estimate precise match  

Figure 5.16 Pose estimate using only color feature in the coupling distance 
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5.8.3 Color texture matching 

If an object surface is not sampled very densely, color images can be 
mapped onto the surface geometry in order to restore the color texture 
information. The resulting texture triangle meshes are presented in 
Section 2.5. 

Section 3.4.5 presents a method to use texture images to establish 
closest point correspondences. Similar to the color feature the color 
texture can provide an escape where the surface geometry does not allow 
unique correspondences to be established. This is the case for example for 
the surfaces in Figure 5.17 representing two views of the same cup and 
having exactly the same shape. 

Figure 5.17 shows how the color texture allows the correct 
registration of the color stripes painted on the cup. The correct matching 
is found in one iteration starting from a registration performed with the 
geometric ICP algorithm. 

The texture windows have a width of nine pixels and about hundred 
vertices are correlated. The established couplings are used to find the 
optimal rigid transformation with the quaternion method. 

 

Figure 5.17 Geometric and texture matching of two views of a cup 

The texture matching succeeds only for small corrections. Several 
experiments showed that is only useful to improve the registration of 
already quite precisely matched surfaces. 
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5.9 Gallery of digitized objects 

The described 3D object digitizing system has been implemented and 
used to create virtual models from several real world objects. This section 
presents the results of three digitized free-form objects. 

Table 5.2 shows the different object statistics: the number of points 
and triangles the object is composed of, the number of object views which 
have been registered to build the complete object and the information 
used to register the objects. 

 
 number of 

points 
number of 
triangles 

number of 
views 

ICP features 

duck 5'667 11'327 10 geometry, orientation 

brick 17'470 34'933 8 geometry, orientation 

rabbit 3'601 7'174 11 geometry, orientation, 
color 

Table 5.2 Digitized object statistics 

The duck object shown in Figure 5.18 is of free-form shape. The surface 
has many concave parts and small details. 

This example illustrates the potential of the system to perform 
reverse engineering on complex shapes. As the complete surface has been 
reconstructed the object can now be regenerated with processes like 
stereo lithography. This is useful to replicate artist work for the jewelry 
industry for example. 

 

Figure 5.18 Toy duck 
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The antique brick has been lent by the archeological museum of 
Neuchatel. Again the complete surface has been precisely digitized in 
order to keep the engraved details of the brick. 

Digitized models of museum objects could be arranged in a virtual 
museum and made accessible over the Internet. This allows precious 
objects from remote places to be inspected without danger of damage. 

 

Figure 5.19 Antique brick 

The rabbit objects shows the successful integration of different views of a 
colored object. The use of multiple features in the ICP matching permits 
the correct reconstruction of the color stripes on the pants of the rabbit. 

Such digitized objects are of great interest for the multimedia 
industry. Realistic models can be obtained with little effort from a real 
world counterpart. 

 

Figure 5.20 Colored toy rabbit 
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5.10 Conclusions 

The presented digitizing system permits the fast construction of models 
of free-form 3D objects. It registers and integrates different object views 
acquired by a 3D scanner and does not need any a priori information 
about the object poses. The various object views are registered by a 
combination of interactive rough registration followed by automatic 
precise registration. 

The ICP algorithm which registers precisely different object views 
runs at the core of the system. The proposed weighing function allows the 
application of the ICP algorithm to the registration of surfaces which only 
partially overlap. Closest point couplings which are not in the overlapping 
area are excluded from the matching error minimization. 

A further improvement of the ICP algorithm is the use of surface 
color and orientation in the closest point search. Both features improve 
the surface matching where the surface geometry is not discriminative 
enough to obtain successful convergence. 

Although convergence can not be proven for the ICP algorithm using 
weighted couplings or the surface orientation feature, several 
experiments and SIC-maps show successful matching results. Therefore, 
the error minimization calculated by the closed-form quaternion method 
does not need to be adapted. 

Sparsely sampled triangle meshes can be registered with the 
presented texture matching when the color texture images are available. 

Finally, several digitized objects are presented and demonstrate the 
successful operation of the object digitizing system. It takes only some 
hours to digitize an entire object which can be considered as quick 
compared to other commercially available systems. 





 

 

Chapter 6 

Object inspection 

In object inspection, the sensed data of a scene has to be matched with an 
object model. The scene may be composed of several objects. In the case 
of an inspection task the complete scene or a part of its geometry has to 
be verified. A different application where the scene is reconstructed is 
also presented. In both applications, the operator chooses the correct 
model from a database, enters a rough pose estimate and launches the 
automatic registration. 

The applications presented in this chapter use the same extensions of 
the geometric point matching as the object digitizing application 
presented in the previous chapter. Again, the two surfaces to be matched 
have only some partial areas in common. Several features are combined 
in the closest point search and the same user interface allows an operator 
to roughly register two surfaces. 

The presented work has been published in [SCHj] [SULa]. 

6.1 Introduction 

The object inspection task is similar to the object recognition task in the 
sense that sensed data of a real world object is matched with a model. 
But, the main interest in object inspection is to visualize the measured 
data together with a virtual model and the results of the inspection 
process. Augmented reality covers the domain of such applications and is 
introduced in the following section. 
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6.1.1 Augmented reality 

The major problem in the field of augmented reality (AR) consists of the 
registration of virtual and real objects. The object registration problem is 
elementary to all AR applications since the information which augments 
the real world information has to be in correspondence with it. For 
example, an aim has to follow the real target as it moves. 

Definition of AR 

In general, AR is defined by the following characteristics: a combination 
of real and virtual data which is registered and updated if necessary in 
real time [AZU]. Real data is acquired with a sensor as, for example, a 
video camera whereas virtual data stands for the additional information 
provided by a database or other knowledge. 

In the case of video images the virtual data may be a wireframe object 
representation which enhances the real object boundaries or instruction 
text which assists the operator during a task. The virtual data used in AR 
allows the operator's perception and understanding of a scene in 
applications as medical visualization, guidance, assembly, quality 
insurance and inspection to be augmented. 

Data augmentation 

Several techniques to combine the virtual and the real data in one 
representation exist. Although, AR can also be applied to audio or other 
information, the following discussion considers only visual data. The 
available devices which combine real and virtual images or views can be 
classified into two broad categories: optical or video technology. 

The optical approach typically uses see-through displays that place an 
optical combiner in front of the user's eyes. This provides a relatively 
simple and effective way to add visual information from the virtual world 
to the human view [HOF] [PEU]. However, since the virtual world is 
generated in general with a simple camera model and projected by a 
monitor system the combination with the real world considering its 
different lighting conditions is problematic. The virtual object in the 
resulting representation may be of low contrast and is not necessarily in 
focus with its corresponding real world object [AZU]. 
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The video approach provides an escape to this problem: Digital 
hardware is used to combine the real world image scanned by a video 
camera and the virtual image rendered on a computer. Video or even 
stereo displays present the resulting image to the user [MAM] [MIL]. 

Another advantage of the video approach is the possibility to verify 
the registration since both the real and virtual representation are 
available to the computer. In optical systems, the virtual information is 
projected onto the real world by estimating the user's view point with 
head position tracking devices. If there is no sensing of the real world, the 
virtual world generation runs in open loop mode and there is no means 
by which the registration result can be verified. Video technologies 
however allow the comparison of the real and virtual image by image 
processing methods: A closed loop control of the object registration 
provides more accuracy. 

Once the real world image is available, not only the registration 
verification but also the calculation of the registration itself can be 
performed with image processing techniques. Different types of image 
features to locate objects and registration methods ranging from manual 
to fully automatic have been proposed. 

AR implementation in this work 

The following implementation of AR follows the video approach for the 
above reasons. Real-time system answer is of minor concern in the aimed 
applications since the scene is static. However, an accurate matching is 
necessary to get a correct representation of the real world or a precise 
quality measure. 

A 3D scanner measures the scene geometry and the geometric point 
matching algorithm performs the accurate model registration. 

6.1.2 Applications 

Microsystems inspection 

In the first application, a micropart inspection system has been developed 
with contributions of the Institute of Microengineering Production of the 
Swiss Federal Institute of Technology in Lausanne. 
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Microsystems are modules with dimensions in the micrometer 
domain which incorporate various functions of electronic, mechanical, 
optical or chemical nature. The measuring of these small structures 
ensures the quality of the process and is the key for successful 
development of manufacturing technologies. 

So far, the inspection of microstructures has been done by looking 
through a microscope. New approaches use the intuitiveness and 3D 
visualization of virtual reality environments coupled with a 3D vision 
system to perform measurements and verification of real microstructures 
at a high 3D accuracy [SULb]. The direct feedback between a real 
microscope and the virtual reality world is established by 3D vision and 
enables a realistic visualization of the measured micro structure data. 

The measuring block uses a computerized 2D optical microscope 
combined with a 3D vision system to inspect the scene and to acquire 
range images of the specimen [SULb]. This vision system extracts the 
position and the 3D shape of the microparts. 

The range images are triangulated as explained in Section 2.5 and 
then displayed on an interactive user interface similar to the one in 
Section 5.4. The operator selects the correct model and roughly aligns it 
with the sensed data using a space mouse. The geometric point matching 
snaps the model onto its real world counterpart. The real data is 
augmented by superimposing the virtual object representation and by 
coloring the measured points according to their fitting error [SULa]. 

Virtual world construction 

In a second application, the construction of virtual worlds having a 
sensed scene view and the object models as input is demonstrated. The 
construction of virtual worlds has several application fields. Virtual 
worlds are used for instance in architecture to represent building 
geometry or in virtual reality robotics to program assembly tasks. Once 
the virtual representation of a real world is constructed the operator's 
view is not limited any more to the camera observing the real world. The 
virtual world provides a copy of the real world where the user has free 
inspection and interaction possibilities. There are other advantages as for 
example in a virtual robotics environment where the real robot is only 
used for the final task execution which saves energy and robot resources 
(see Section 4.7). 

Virtual worlds have been constructed automatically in the object 
recognition application. The object detection problem has been solved 
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with a range change segmentation algorithm (see Section 4.4.1). This is 
not always possible and therefore a visually aided vision system is 
proposed in this chapter. AR provides a comfortable way to construct 
virtual worlds in an interactive manner and to see the progression of the 
construction. 

The vision system disposes of an object database containing objects 
represented by their geometry which may be of any shape. These models 
are generated by a digitizing system as presented in Chapter 5 or 
provided by a CAD model database. The operator constructs the virtual 
world object by object with a point and click interface. He detects the 
different objects present in the scene and roughly registers the model. 
The virtual world is registered precisely to the real world using geometric 
point matching. 

6.2 Comparison with other work 

6.2.1 Object inspection 

Usually the input of an inspection system is a cloud of points representing 
the sensed data. In order to inspect these data the exact coordinate 
transformation between the 3D scanner and the object has to be known. 
Traditionally, this needs a lengthy registration and complicated fixture of 
the sample to be inspected. Therefore, several authors have proposed 
automatic registration methods for sensed data of free-form objects and 
CAD models [MEN] [BESb]. Since these methods work directly on the 
sensed data points, no segmentation is needed and any object shape can 
be processed. Furthermore, the matching results can be visualized easily 
by attributing a color corresponding to the matching error to every data 
point [MOR]. 
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This work develops an AR interface for the inspection task and extends 
the ICP algorithm to use surface orientation and color features. 
Triangulated CAD models can be used without conversion in the vision 
algorithm. Different methods are proposed to accelerate the registration 
since the sensed shape usually contains a huge amount of data points. 

6.2.2 Virtual world construction 

During registration, the object which has to be registered with some 
virtual data has first to be detected in the real world. Depending on the 
application several techniques to perform this task exist. Visual marks 
put on the object are easily located applying traditional segmentation 
techniques to the video image [HOF]. More flexible systems which allow 
several objects to be present in the scene search for geometric features in 
the video image. Features such as object edges are detected and grouped 
into one object representation. 

As soon as we deal with objects of more complex shape the definition 
of pertinent and reliably detectable features becomes more difficult (see 
Chapter 2). Object detection is even more difficult if the objects are 
placed on a complex background formed by a pile of objects or textured 
material. 

To avoid this problem, interactive systems for virtual world 
construction have been presented [MAM] [MIL]. Here, the operator 
locates and identifies the object and its type, this results in high flexibility 
since any object type can be treated. This approach is applied in this work 
since the use of human perception has the following advantages: a high 
score in estimating the kind and the rough pose of an object. A high 
quality interface is crucial for successful and ergonomic operator task 
completion. Stereo vision systems as used in this work provide the 
necessary depth perception and allow the operator to manipulate and 
locate objects successfully in 3D space. 

Different levels of real world knowledge [MIL] ranging from simple 
to complex and from fully modeled to completely unknown lead to 
different reconstruction methods. With some methods simple unknown 
polyhedral worlds are constructed interactively by drawing lines along the 
object edges and by relying on grouping the complete object is formed. 
Other methods focus on the construction of block worlds where cubes are 
aligned manually [MAM]. Methods to construct virtual worlds built of 
more complex objects rely on a model database. Here, the object types 
present in the real scene are known from a model database, as for 
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example in assembly or medical tasks where the model information is 
accessible from a CAD database or computer tomograph scans. 

Accurate matching of the virtual and real world is crucial for a 
successful virtual world construction. The pose alignment of 3D objects 
by matching image features fails in the presence of edgeless, smooth 
objects. In order to cope with any object form, again the ICP algorithm is 
used to register the model with the sensed data starting from a rough 
pose estimate entered by the operator. 

6.3 Implementation 

Since this chapter uses the same modifications of the ICP algorithm as 
presented in Chapter 5, they just get summarized here. Also, the same 
interactive user interface shown in Section 5.4 is used to present the 
results to an operator. 

A method to handle large amounts of data in the registration process 
and the implementation of AR is presented later on. 

ICP modifications 

The ICP algorithm automatically aligns the selected model with the 
sensed data. Again, the use of several features in the closest point search 
as introduced in Section 3.4.2 is of great help. Especially in the virtual 
world construction task, different objects may touch one another and the 
geometric distance is not pertinent enough to distinct them. Surface color 
and orientation information provides an escape to this problem as 
demonstrated by the following results. 

The original ICP algorithm holds for the matching of two surfaces 
where one surface is a subset of the other. Here, the scene is not 
segmented any more and is usually composed of several objects. The 
sensed and the virtual data contain surface areas not present in the other 
one. Therefore, again the weighing of Section 5.6.1 is used to exclude 
from the matching error minimization the points of parts which do not 
overlap. 
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Data reduction 

Usually the acquired scene or object data represents a huge amount of 
data, typically in the order of magnitude of 100’000 points. The following 
methods are introduced to reduce the amount of the data point 
representing the surface P for which the closest point search is 
performed. 

Since the operator roughly registers the model with the scene, the 
data points used in the geometric point matching are limited to the points 
falling into the model circumsphere. 

Furthermore, the matching can be started with a low resolution 
representation of the sensed data only including every fourth point for 
example. Once a first matching is done, a scene at higher resolution can 
be loaded and the matching is continued. 

Error indication with AR 

Since the automatic matching couples every data point with the closest 
point on the model, the resulting coupling distances give a measure of the 
objects' similarity. Statistical indicators as mean and deviation can be 
calculated and displayed to the operator. Especially in the inspection task, 
it is of great interest to easily identify the object areas which are outside 
the error tolerance. The presented system colors the data points 
according to their coupling distance and provides a quick visual overview 
of the object quality. 

6.4 Results 

6.4.1 Microsystems inspection 

Acquisition 

Inspection of microsystems using an AR interface is interesting since it 
deals with object dimensions which are not accessible to the human eye. 
As stated in the introduction, an optical microscope is used to measure 
the small microparts. Several scans performed at different microscope 
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table height positions allow the calculation of a range image using depth 
from focus algorithms (see Section 2.4.1) [SULb]. 

The following Figure 6.1 shows a range image acquired with the 
mentioned 3D scanner. The range image contains about 300’000 pixels 
from a micromotor of 132 microns in height and 280 microns in 
diameter. The micromotor contains the stator and the rotor part. 

 

Figure 6.1 Range image of a micromotor 

The acquired range image is converted in a triangulated view as described 
in Section 2.5 and is rendered on a graphics monitor. The operator selects 
the corresponding model from the database and uses the space mouse to 
register it roughly with the data measurements. Figure 6.2 shows the 
models of the rotor and stator building the micromotor of Figure 6.1. 

 

Figure 6.2 Micropart models 
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Inspection 

The automatic registration is executed using the entered pose estimate. 
Figure 6.3 shows a sequence of screen shots of several iterations of the 
ICP algorithm matching the stator part. 

 

Figure 6.3 Four iterations of the automatic matching of the stator 

The matched surface is coded by coloring the data points according to the 
matching error. The color of the points which are inside the matching 
tolerance ranges from red to blue, where blue represents a perfect match. 
Points which are outside the tolerance are rendered in grayscale 
according to their height. Figure 6.4 shows the matched stator model 
superposed to the object data and the data colored according to the 
matching error. 

 

Figure 6.4 Augmented reality showing the matching errors for a micromotor 

The augmented reality allows the quick identification of the stator parts 
which are out of tolerance (the center and the four corners in the above 
example). As expected the data points corresponding to the rotor are not 
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coupled at all. The colored regions represent matchings with a maximal 
error of 2.4 µm. The scanner works at a resolution of 0.5 µm. Compared 
to this the resulting mean fitting error of 1.32 µm is quite high and the 
data considerably noisy. 

Problems with CAD models 

In the above example the stator has been modeled by a standard modeler. 
Such models may cause problems when using the kD tree to find the 
nearest point on a triangle as defined in Section 3.4.5. This accelerated 
search algorithm assumes that the nearest triangle is attached to the 
nearest vertex. 

Since standard modelers usually compose a complex shape by adding 
or subtracting simple triangulated shapes such as cubes or spheres, the 
resulting surface is not necessarily correctly triangulated. Vertices may lie 
on triangle borders and the nearest triangle is therefore not necessarily 
connected to the nearest vertex. 

The triangulation of such models needs to be solved before they can 
be used with the kD tree search. 

6.4.2 Virtual world construction 

In the second application, an AR interface helps to reconstruct a scene 
having only one view and the object models of it. The different steps are 
similar as for the object inspection task. 

An operator uses the 3D interface to roughly place the chosen model. 
Then, the ICP algorithm performs the precise alignment. Figure 6.5 
illustrates these three steps. Augmented reality helps to verify quickly if 
the geometric point matching has converged successfully and if some 
more models need to be added to the scene. 
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Figure 6.5 Scene view with missing data, roughly placed model and automatic 
matched model 

The ICP algorithm converges successfully only for a limited range of 
initial configurations (see Section 3.7). However, experiments in 
Section 5.8 show that this range appears to be comfortably large and does 
not demand a precise alignment from the operator. 

Once all models are placed correctly in the scene, the sensed data can 
be removed and the constructed virtual world can now be inspected from 
any view point as shown in Figure 6.6. 

 

Figure 6.6 Different views of the constructed virtual world 

The above example shows that a virtual representation of a real world 
composed of modeled objects can be constructed successfully with the 
presented system. Only one view is needed and therefore one static 3D 
scanner observing the scene is sufficient. 
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For teleoperation tasks, it is important to be able to change the view 
point, which is possible if the virtual world is completely constructed. 
Manipulation and path planning tasks are much more easily defined if 
the operator is not limited to one view point. 

6.5 Conclusions 

The presented system provides a method with which to successfully 
implement augmented reality for object inspection and virtual world 
construction. 

The scene is sensed by a 3D scanner which allows the triangulation of 
the data points and the rendering of the acquired data in any pose. 

A semi-automatic registration approach is proposed in order to 
register the real data and the virtual models. The operator locates and 
identifies objects and the computer calculates the registration. Human 
perception gives flexibility while the computer provides precision. 

The ICP algorithm allows an efficient and fast data registration of 
free-form shapes. The matching error of the closest point search provides 
a measure for the surface similarities. 

The augmented reality interface presents the results by visualizing 
the errors directly on the sensed data. The data points are colored 
according to their individual error distance. This permits for example the 
easy identification of the bad object regions. 





 

 

Chapter 7 

Conclusions 

This work exploits the advantages of low-level primitives for the 
processing of free-form objects in 3D vision. Geometric point matching 
has been investigated as an escape from the classical image segmentation 
and feature extraction problem and to register precisely free-form 
surfaces. Different applications show the usefulness and demonstrate the 
successful implementation of the proposed approach. 

7.1 Conclusions 

The processing of 3D objects is greatly simplified by the use of 3D 
scanners. The optical working principle of the used 3D scanners allows 
the quick acquisition of the surface geometry of objects of any shape. 
Since 3D scanners directly sense the object geometry the implemented 
vision algorithms do not have to deal with geometry recovering, nor with 
scaling. The fusion of color and depth is straightforward as the same 
camera senses both pieces of information in the employed 3D scanner. 

Low-level surface representations such as a cloud of points or a 
triangle mesh are directly obtained from the 3D scanner output data. This 
representations are well-suited for the processing of free-form objects 
and have been used successfully to model several free-form objects. 
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Geometric point matching is proposed to register precisely free-form 
surfaces. For this task an iterative closest point (ICP) algorithm is 
implemented and extended with the following contributions. 

The integration of additional features such as color, texture and 
surface orientation improves the matching where the surface geometry 
alone fails. 

Several methods are proposed to reduce and to organize the 
primitives representing an object surface. The kD tree provides a method 
to establish quickly correspondence between points or triangles. 
Furthermore, the kD tree is well-suited to include any number of features 
in the correspondence establishment. Homogenous data reduction is 
obtained by observing the range image structure. 

Further extensions adapt ICP algorithm for the use in different 
applications. Weighing functions provide a method to match surfaces 
which only partially overlap. Discriminating matching quality measures 
are used to classify the matching of two surfaces. Change error allows the 
reduction to a minimum of the needed iterations of the ICP algorithm. 

The convergence behavior of the extended ICP algorithm is 
extensively investigated with the proposed setup leading to the SIC-maps. 

Finally, the presented applications and the obtained results show the 
successful integration and extension of the ICP algorithm for the 
encountered task. 

7.2 Contributions 

In addition to the above general conclusions, this section highlights the 
main contributions of this work. 

SIC-maps 

This work proposes a new way to measure the qualify of a matching. It 
defines a setup which reduces significantly the space of all possible poses 
of two surfaces to be matched. The configurations for which the ICP 
algorithm finds a successful match are indicated in a SIC-map. 

This SIC-maps allow the investigation of the convergence behavior of 
the ICP algorithm and have been established for several free-form 
objects. The information of the SIC-maps has been successfully used to 
design the object recognition application. 
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Enhanced correspondence establishment 

The integration of the surface color and surface orientation feature in the 
closest point search results in significant improvement of the matching 
behavior of the ICP algorithm. All features use an Euclidean distance 
measure and are therefore easily added to a total coupling distance and 
integrated in the fast kD tree search. An intuitive method is proposed to 
normalize the different feature value ranges in combination with the 
overlap detection weighing function. 

A novel texture matching algorithm allows the registration of sparsely 
sampled surfaces using their texture image. 

Implemented applications 

A major contribution of this work covers the implemented and 
operational applications. They demonstrate the successful integration of 
the several extensions proposed for the ICP algorithm. The selected 
applications provide solutions to problems of major interest in 
multimedia, industrial inspection, teleoperation or reverse engineering. 

Exhaustive tests have been performed to assess the recognition 
performance of the object recognition application. The successful 
assembly of a scotch dispenser part validates the performance of the 
vision system. 

Several objects have been digitized to show the capabilities of the 
object digitizing system to obtain a virtual model which corresponds to 
the real world counterpart in geometry and color. 

The object inspection system and its augmented reality interface 
allow the easy inspection of details on microparts invisible to the human 
eye. The visual error representation permits the fast location of shape 
differences. 

7.3 Limitations and future work 

Object recognition 

Although several methods have been proposed to accelerate the ICP 
algorithm the response time of the object recognition is still quite high 
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(about 10 seconds on a fast workstation). Geometric point matching 
should be chosen for its capabilities to accurately calculate an object pose. 

When the recognition includes a large number of models, indexing 
techniques must be introduced. Appearance based methods such as those 
presented in Section 2.2.1 could be useful to select a few potential models 
used for the relatively costly geometric point matching and they even 
provide a rough pose estimate. 

Object digitizing and inspection 

The object digitizing application constructs models by adding one view 
after the other sequentially to the growing model. Therefore, the 
registration errors get accumulated. Different authors have proposed 
methods to escape this problem [BEN] [BERb] [STOb] [TUR]. A spring 
model which minimizes the total registration error of all surfaces is 
presented in [STOb]. Turk and Levoy use a cylindrical scan of the object 
as a master onto which every additional surface is registered [TUR]. 

More experiments are necessary to investigate the precision of the 
registration performed by the ICP algorithm. In general, the correct rigid 
transformation which matches two surfaces is not known and it is 
difficult to evaluate the ICP matching results. In a first experiment not 
presented yet, two surfaces have been aligned with photogrammetric 
methods and compared to the matching obtained with the ICP algorithm. 
The difference between the two matchings was very small and shows that 
the ICP algorithm is capable of reaching more or less the same 
performance than established methods. 

This work focused on the digitizing of free-form objects. Usually the 
objects used in industry are simpler but have sharper edges. The scanning 
and reconstruction of such surfaces leads to new problems not yet 
investigated. 
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The recursive closest point search based on kD trees is efficient for long 
feature vectors since the memory requirement of the kD tree is 
independent on the number of features used. However, other methods as 
distance maps which give direct access to the closest point may show 
better performance for small feature vectors, for example the vector of the 
Cartesian coordinates. 

A remaining challenge is the automatic development of poses for the 
establishment of a rough surface registration. Some first experiments 
with the color feature have been performed in this work. Further 
investigations are necessary in order to completely automate the 
digitizing and inspection systems. Curvatures may provide the necessary 
information to construct a set of potential pose estimates. 
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