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ABSTRACT

In this paper, we propose a dynamic attentive system for de-

tecting the most salient regions of interest in omnidirectional

video. The spot selection is based on computer modeling of

dynamic visual attention. In order to operate on video se-

quences, the process encompasses the multiscale contrast de-

tection of static and motion information, as well as fusion of

the information in a scalar map called saliency map. The pro-

cessing is performed in spherical geometry. While the static

contribution collected in the static saliency map relies on our

previous work, we propose a novel motion model based on

block matching algorithm computed on the sphere. A spher-

ical motion field pyramid is first estimated from two consec-

utive omnidirectional images by varying the block size. This

latter constitutes the input of the motion model. Then, the

motion saliency map is obtained by applying a multiscale

motion contrast detection method in order to highlight the

most salient motion regions. Finally, both static and motion

saliency maps are integrated into a spherical dynamic saliency

map. To illustrate the concept, the proposed attentive system

is applied to real omnidirectional video sequences.

Index Terms— dynamic visual attention, block matching

on the sphere, omnidirectional image processing

1. INTRODUCTION

To perceive the environment efficiently, the human visual

system (HVS) proceeds by selecting salient targets. The

targets are explored successively by means of saccadic eye

movements, which are responsible for shifting the fovea onto

the current fixated target. Defined as selective attention, this

mechanism can be seen as a preprocessing step, which re-

duces the amount of information that will be processed later

by the brain.

The purpose of any dynamic visual attention model is to

provide an automatic selection of potential regions of interest

all over the sequence duration. The selection process relies on

motion as well as static feature contrasts. It encompasses the
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feature extraction from the video sequence and its integration

to define the resulting dynamic saliency map. This scalar map

indicates salient locations, in the form of a saliency distribu-

tion. At the end, most salient regions of interest are defined

from the saliency map using a selection process based on a

neural network.

Several investigations focusses on the architecture of

computer models of dynamic visual attention [1, 2, 3]. In

order to operate on video sequences, such models generally

integrate an additional motion component to the classical

saliency-based model that has been proposed in [4]. All these

models operate in the Euclidean geometry, i.e. they fit images

obtained with conventional cameras. Applying directly such

models on omnidirectional images leads to inaccurate defor-

mations [5], due to the non-planar geometry of the image.

Specific mappings, like panoramic or log-polar mappings,

attempt to reduce somehow the distortions but they do not

succeed completely.

Nowadays, the development of applications involving

omnidirectional imaging is increasing because of its larger

field of view and it is widely used in robotics and surveillance.

In addition, visual attention is an attractive solution to reduce

complexity issues in computer vision applications. Indeed,

it can be conceived as a preprocessing step which allows a

rapid selection of a subset of the available sensory informa-

tion. Once selected, the salient targets become the specific

scene locations on which higher level computer vision tasks

can focus. Therefore, the development of an attentive system

operating on omnidirectional video may lead to prospective

computer vision applications.

In this paper, we propose a dynamic attentive system for

detecting the most salient regions of interest in omnidirec-

tional video. All the processing is performed in the spherical

geometry in order to avoid the omnidirectional image distor-

tions. In fact, it was shown in [6] that there exists an equiva-

lence between the central catadioptric projection and the two-

step mapping onto the sphere. Therefore, the approach is ap-

plicable to any omnidirectional image that can be mapped on

the sphere.

The paper is organized as follows. Section 2 presents the

dynamic attentive system that operates in spherical geometry,

including the static model (Subsection 2.1), the motion model



(Subsection 2.2) and the integration of both models (Subsec-

tion 2.3). Then, Section 3 illustrates the concept by showing

a few results on (spherical) omnidirectional video sequences.

Finally, we conclude and give some basic future work outlines

in Section 4.

2. DYNAMIC VISUAL ATTENTION MODEL ON THE

SPHERE

A computational visual attention model dedicated to video

sequences must consider both static and motion features.

The model is therefore composed of two parts: (i) static

saliency map issued from a set of static features and (ii)

motion saliency map derived from a spherical motion field

feature. The resulting dynamic saliency map is computed by

integrating both saliency maps.

2.1. Static Saliency Map on the Sphere

The input signal is a color image defined on the sphere, i.e.

in spherical coordinates θ ∈ [0, π], ϕ ∈ (0, 2π] (the radius of

the sphere is r = 1). Originally proposed in [4], the model is

based on four main steps. First, several static features are ex-

tracted from the image. Second, for each feature, a multiscale

contrast detection method is applied to compute their corre-

sponding conspicuity map. This map highlights the contrasts

at different scales according to the feature. Third, the fea-

tures of the same nature are integrated in order to define a set

of cues. Finally, all the cues are integrated into the saliency

map. This scalar map indicates salient locations, in the form

of a saliency distribution. Precise details on the computation

of the static saliency map performed on the sphere can be

found in [5].

Let us remind the final integration step. The resulting

static spherical saliency map is computed by fusing together

all cue conspicuity maps:

SS2 =
∑

cue∈int,chrom,orient

N (Ccue(θ, ϕ)), (1)

where N () is the map integration scheme that simulates the

competition between the maps. In this paper, we consider

three cues: intensity, color and orientation. We note that the

conspicuity maps are previously scaled at the same range val-

ues by applying a peak-to-peak normalization.

2.2. Motion Saliency Map on the Sphere

The motion saliency map highlights the most salient regions

according to the motion feature. The motion model can be

described in two steps:

• The estimation of the spherical motion feature. It cor-

responds to a spherical motion field pyramid, used as

input feature of the motion model (Subsection 2.2.1).

• Applying a multiscale motion contrast detection method

to the spherical motion feature (Subsection 2.2.2).

2.2.1. Spherical Motion Field Pyramid

The spherical motion field pyramid ΠM (Figure 1) is com-

posed of N multiscale motion fields Mi((θ, ϕ)) on the sphere,

i ǫ {1, 2, ..., N}, corresponding to motion vector estimation at

different scales. Coarse scale maps detect motion of large re-

gions while fine scale maps detect motion of small regions.

The initial resolution of the first level M1 (the highest res-

olution) is h1 × w1 and the resolution of the other levels is

decreasing over the pyramid by factor of 2 between two con-

secutive levels.

Fig. 1. Spherical motion field pyramid based on BMA on the

sphere.

Each level of the pyramid is estimated using block match-

ing algorithm (BMA) operating directly in spherical coordi-

nates [7]. Basically , the idea is to partition the spherical

grayscale image into uniform solid angles of size Bi ≡ bi,ϕ×
bi,θ, called spherical blocks. These blocks are then paired

with the best matching blocks of the same size in the reference

spherical image within a search window of size si,ϕ × si,θ.

To compute the spherical motion pyramid ΠM , the block

size Bi is varying according to the pyramid level Mi in or-

der to detect large moving regions with large blocks and fine

moving regions with fine blocks (Figure 1). The block size is

therefore computed according to the following equation:

Bi = 2(i−1) · B1, (2)

where B1 is the initial block size at the first level.

We must note that non-overlapped partitioning is used for

defining the blocks. In addition, a full search technique and

minimization of the mean square error (MSE) distance is used

for the matching.



2.2.2. Multiscale Motion Contrast Detection Method

In the sense of visual attention, center-surround contrast

refers to a difference between a center and surround region.

It is admitted that such contrast can be modeled by DoG fil-

tering. This method has however the inconvenience of being

heavy in terms of computation costs, especially for computing

center-surround contrasts at numerous scales. For this reason,

regarding the static model and what concerns the sphere, an

alternative approach has been proposed in [5] to approximate

the multiscale center-surround contrast using spherical image

pyramid and cross-scale differences. Regarding the motion

feature, we use a similar approach, which is described below.

In order to compute motion contrasts, the idea is basi-

cally to define two average motion vectors ~vc and ~vs from the

motion pyramid ΠM , representing respectively the motion of

center and surround regions.

Once the motion average vectors ~vc and ~vs have been esti-

mated from the motion pyramid, a motion conspicuity opera-

tor is applied in order to detect center-surround contrast. Sev-

eral operators are possible according to the nature of motion

contrasts [3]. In this paper, we consider an operator based on

motion contrast in magnitude, which is suitable to highlight

salient moving regions of video sequences with fixed back-

ground. We note that another operator would be required to

highlight both phase and magnitude motion contrasts that oc-

cur in the case of moving background.

Fig. 2. Motion saliency computation on the sphere.

Formally, the magnitude motion contrast operator com-

putes the norm of the center and surround motion vectors and

the absolute difference:

Acs(~vc, ~vs) = |‖~vc(θ, ϕ)‖ − ‖~vs(θ, ϕ)‖|, (3)

where ~vc is the motion vector at the center level Mi and ~vs is

the motion vector at the surround level which is up-sampled

to the corresponding resolution.

The spherical motion pyramid and magnitude operator

having been defined, we describe below the multi-scale mo-

tion contrast detection method used to compute the resulting

spherical motion saliency map.

In order to highlight motion contrast at different scales,

several intermediate conspicuity maps are computed, each

one corresponding to a specific size of center-surround con-

trast (Figure 2). The motion magnitude operator Acs is

applied several times at the different levels of the pyramid to

compute the intermediate conspicuity maps CAij
:

CAij
(θ, ϕ) = | ‖~vi(θ, ϕ)‖ − ‖~vj(θ, ϕ)‖ | . (4)

We note that up-sampling is required to perform point-by-

point substraction. In this paper, we use a spherical motion

pyramid of n = 6 levels, each intermediate conspicuity map

CAij
is obtained from a center level i ǫ {1, 2, 3, 4} and a sur-

round level j = i + δ with δ ǫ {2, 3}. δ corresponds to the

scale difference between the center and surround level. There-

fore, 6 center-surround differences are computed at different

scales (1-3, 1-4, 2-4, 2-5, 3-5, 3-6). Each intermediate con-

spicuity map has a resolution corresponding to its center level.

Finally, all intermediate maps are up-sampled at the initial

resolution and integrated into the motion saliency map Cmagn

using the same map integration scheme as in the static model:

Cmagn =
∑

i,j

N (CAij
(θ, ϕ)). (5)

2.3. Dynamic Saliency Map on the Sphere and Spot De-

tection

In this section, we describe the integration of both static SS2

and motion MS2 spherical saliency maps in order to obtain

the final dynamic saliency map DS2 . This yields a single

saliency measure of interest for each location on the sphere.

The final spherical saliency map is computed according to

the following equation

DS2 = N (SS2) + N (MS2), (6)

where N (.) is the same map integration strategy as in the

static model.

Finally, from the spherical dynamic saliency map, the

most salient locations on the sphere are selected. The idea

consists in detecting successively the locations of the max-

ima. ”Winner-Take-All” (WTA) mechanism and inhibition of

return (IOR) are applied iteratively on the saliency map. The

complete details can be found in [5].

3. EXPERIMENTAL RESULTS

In order to illustrate the proposed dynamic visual attention

model operating on the sphere, we apply it on real omnidirec-

tional image sequences. The video sequence is acquired with



a spherical omnidirectional multi-camera sensor (LADYBUG

[8]). Each frame from this sequence is defined on 1024×1024
equi-angular spherical grid (θ, ϕ) and covers around 75% of

the sphere. The camera is placed on a table in an office, while

a person enters in the room. Two frames from the sequence

are shown on Figure 3 (a). The dynamic saliency map is de-

picted in (b). The resulting spots of attention are determined

from the saliency map. The first three of them are shown in

(c). We can see that the proposed attentive system highlights

both static and moving salient regions in the scene: two spots

(#1 and #2) are located on the moving person and the spot #3

corresponds to the salient static object.

Fig. 3. Experimental results: (a) input omnidirectional image

on the sphere; (b) spherical saliency map; (c) spots of atten-

tion on the sphere.

4. CONCLUSIONS

In this paper, we have proposed a dynamic attentive system

for omnidirectional video sequences operating on the sphere.

The process encompasses the multiscale contrast detection

of static and motion features, and its integration to define

the resulting dynamic saliency map. Such a system can be

a prospective solution to speed-up computer vision applica-

tions. Indeed, it can be seen as a preprocessing step, which

reduces the amount of information that will be processed later

by high-level and computer vision tasks. To illustrate the

concept, the proposed system has been applied to video se-

quences acquired with an omnidirectional multi-camera sen-

sor. Each frame is represented in the spherical coordinates.

The experiments illustrated the selection process of both static

and motion salient regions, represented by a subset of atten-

tional spots.

Regarding the motion contribution, the proposed system

highlights motion contrast in magnitude, which is suitable for

video sequences with fixed background. As a future work, the

attentive system could be extended to omnidirectional video

sequences with moving background.

In addition, we note that the proposed system, which oper-

ates on the sphere, could be applied also on other catadioptric

omnidirectional sensors once they have been mapped on the

sphere. Such an extension requires a geometric transforma-

tion. Besides, in [9] was proposed a solution to extend a static

attentive system on the sphere to hyperbolic and parabolic

omnidirectional images.
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