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Abstract 
Visual attention is the ability of a vision system, be it biological or artificial, to rapidly detect  
potentially relevant parts of a visual scene, on which higher level vision tasks, such as object 
recognition, can focus. The saliency-based model of visual attention represents one of the main 
attempts to simulate this visual mechanism on computers. Though biologically inspired, this model 
has only been partially assessed in comparison with human behavior. Our methodology consists in 
comparing the computational saliency map with human eye movement patterns. This paper 
presents an in-depth analysis of the model by assessing the contribution of different cues to visual 
attention. It reports the results of a quantitative comparison of human visual attention derived 
from fixation patterns with visual attention as modeled by different versions of the computer 
model. More specifically, a one-cue gray-level model is compared to a two-cues color model. The 
experiments conducted with over forty images of different nature and involving twenty human 
subjects assess the quantitative contribution of chromatic features in visual attention. 
 

1. Introduction 
Visual attention is the ability of a vision system, be it biological or artificial, to rapidly detect 
potentially relevant parts of a visual scene, on which higher level vision tasks, such as object 
recognition, can focus.  
 
It is generally agreed nowadays that under normal circumstances human eye movements are 
tightly coupled to visual attention. This can be partially explained by the anatomical structure of 
the human retina, which is composed of a high resolution central part, the fovea, and a low 
resolution peripheral one. Visual attention guides eye movements in order to place the fovea on the 
interesting parts of the scene. The foveated information can then be processed in more detail. 
Thanks to the availability of sophisticated eye tracking technologies, several recent works have 
confirmed this link between visual attention and eye movements [Kus97, Sal00, Pri00]. Hoffman 
et al. suggested in [Hof95] that saccades to a location in space are preceded by a shift of visual 
attention to that location. Using visual search tasks, Findlay and Gilchrist concluded that when the 
eyes are free to move, no additional covert attentional scanning occurs, and most search tasks will 
be served better with overt eye scanning [Fin97]. Maioli et al. agree that "There is no reason to 
postulate the occurrence of shifts of visuospatial attention, other than those associated with the 
execution of saccadic eye movements" [Mai01]. Thus, eye movement recording is a suitable 
means for studying the temporal and spatial deployment of visual attention in most situations. 
 
Like in human vision, visual attention can play a fundamental role in computer vision, given the 
high computational complexity of typical tasks [Tso90]. Thus, the paradigm of computational 
visual attention has been widely investigated during the last two decades, and numerous 
computational models of visual attention have been suggested [Jul83, Ahm90, Mil93, Culh92, 
Tso95, Bac01]. For a more complete overview on existing computational models of visual 
attention, the reader is referred to [HeHu]. 
Most of these models rely on the feature integration theory presented in [Tre80]. The saliency-
based model, which relies on this principle, has first been presented in [Koc85], and has given rise 
to numerous software and hardware implementations [Itt98, Oue00, Oue03c]. The model starts 



with extracting a number of features from the scene, such as color, intensity, and orientation. Each 
of the extracted features gives rise to a conspicuity map which highlights conspicuous parts of the 
image according to this specific feature. The conspicuity maps are then combined into a final map 
of attention named saliency map, which topographically encodes stimulus saliency at every 
location of the scene. Note that the model is purely data-driven and does not require any a priori 
knowledge of the scene. This model has been used in a number of computer vision applications, 
including image compression [Oue01b], color image segmentation [Oue03a], and object tracking 
in dynamic environments [Oue03b].   
 
However, and despite the fact that it is inspired by psychophysical studies, only few works have 
addressed the biological plausibility of the saliency-based model [OuWa]. Recently, Parkhurst et 
al [Par02] presented for the first time a quantitative comparison between the computational model 
and human visual attention. Using eye movement recording techniques to measure human visual 
attention, the authors report a relatively high correlation between human attention and the saliency 
map, especially when the images are presented for a relatively short time of few seconds. Although 
the contribution of different cues in visual attention was also addressed in that paper, the presented 
results did not allow a general conclusion regarding the contribution of chromatic features.  
  
The work presented in the present paper goes further and provides an in-depth analysis of the 
saliency-based model by quantitatively assessing the contribution of different visual cues in 
computing visual attention. More specifically, it is aimed at assessing the contribution of the 
chromatic channels to the control of visual attention. Our hypothesis is that a model including 
luminance and chrominance based feature channels fares better in predicting where human 
observers foveate than a model based only on those features derived from luminance. 
The basic idea is to compare human fixations derived from eye movement experiments with the 
computational maps of attention - the saliency maps - produced by two different versions of the 
saliency-based model. To this end, color images were presented to human subjects while their eye 
movements were recorded, providing information about the spatial locations of foveated image 
parts, as well as the duration of each fixation. 
Then, two computational saliency maps were computed for the same image: a grayscale-based 
map and a color-based one. For computing the former, only intensity-based features like intensity 
itself and orientations were considered, whereas for the color-based saliency map, chromatic 
features were used additionally. 
Another contribution of this work is the use of different metrics for comparing human and 
computational visual attention. The first comparison metric is a correlation coefficient computed 
for two maps of attention: the human map of attention, which is computed as the integral of the 
recorded human fixations, and the computational saliency map. The second comparison metric is a 
saliency difference measure between randomly picked values of a saliency map on the one hand, 
and fixation-guided values of the same map on the other hand. 
 
The remainder of this paper is organized as follows. Chapter 2 recalls basics of the saliency 
models. Then, chapters 3 and 4 present the experimental workflow considered in this research. 
Both human fixation measurement methods and comparison methods will be exposed. Finally, 
chapter 5 presents the results, and a general conclusion follows in chapter 6. 

2. Saliency models 

The saliency-based model of visual attention was proposed by Koch and Ullman in [Koch85]. It is 
based on four major principles: visual attention acts on a multi-featured input; saliency of locations 
is influenced by the surrounding context; the saliency of locations is represented on a scalar map ( 
the saliency map); and the winner-take-all and inhibition of return mechanisms are suitable to 
provide the locations for consecutive attentional shifts. 
 
Several works have dealt with the realization of this model [Mil93, Itt98]. In our work, we used an 
implementation of the saliency-based model of visual attention that was inspired by these works. 
The different steps of the model are detailed below (Fig. 1). 



2.1. Feature maps 
First, a number of features (1..j..n) are extracted from the scene by computing the so-called feature 
maps . Similar to Itti et al seven different features are considered in this work. They are 
computed from an RGB color image and belong to two main cues, namely intensity and color. 
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• Intensity feature 
BGRIF ⋅+⋅+⋅== 11.059.03.01   (1) 

• Four local orientation features  according to the angles . Gabor 
filters, which approximate the receptive field impulse response of orientation-selective 
neurons in primary visual cortex [Lev91], are used to compute the orientation features.  
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Note that such chromatic opponency exists in human visual cortex [Eng97] and that the 
normalization of the opponency signals by I decouples hue from intensity. 
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Figure 1. Saliency-based model of visual attention. (a) depicts the different steps of the model. (b) 
illustrates the conspicuity operator.  

2.2. Conspicuity maps 
In a second step, each feature map is transformed into its conspicuity map which highlights the 
parts of the scene that strongly differ, according to the feature specificity, from their surroundings. 
The computation of the conspicuity maps relies on three main components:  



• The center-surround mechanism, implemented with a difference-of-Gaussians-filter, DoG 
is used to extract local activities for each feature type.  

 
• A multiscale approach in order to detect conspicuous regions, regardless of their sizes. The 

solution used in this work is based on a multi-resolution representation of images [Itt98] 
and computes, for each feature j, a set of conspicuity maps  at different resolutions k.  kjM ,

• A normalization and summation step during which, for each feature j, the multiscale maps 
 are combined, in a competitive way, into a unique feature-related conspicuity map 

 in accordance with Eq.3 
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where is a normalization operator which simulates the competition between the 
different scales. A detailed description of the normalization strategy is given below. Note 
that the summation of the multiscale maps is achieved at the coarsest resolution. Maps of 
finer resolutions are lowpass filtered and downsampled to the required resolution. 
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2.3. Cue maps 
For the comparison purposes of the present work, we group together several features  and 
we define cue conspicuity maps , according to Eq.4. 
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2.4. Saliency map 

In the third step of the attention model, the cue-related conspicuity maps  are integrated , in a 
competitive manner, into a saliency map S in accordance with Eq.5 
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where m is the number of the considered cues. The normalization operator  is described 
below. 

(.)N

2.5. Normalization for map combination 
In order to integrate several conspicuity maps into a unique map, the normalization strategy  
used in this work consists of the following [Itt98]: 

(.)N

1) Scale all maps to the same dynamic range in order to eliminate across-modality amplitude 
differences due to dissimilar extraction mechanisms. 

2) For each map, compute the global maximum M and the average m  of all other local 
maxima.  

3) Globally multiply the map by a weight 2)( mMw −= . Thus,  normalizes a 
conspicuity map C in accordance with Eq.6 
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In fact, w measures how the most active locations differ from the average of local maxima of a 
conspicuity map. Thus, this normalization operator promotes conspicuity maps in which a small 
number of strong peaks of activity are present and demotes maps that contain numerous 
comparable peak responses. 

3. Human visual attention 
Under the assumption that under most circumstances, visual attention and eye movements are 
tightly coupled, the deployment of human visual attention is experimentally derived from the 
spatial pattern of fixations. 



3.1. Eye movement recording 
Eye movements were recorded with a infrared video-based tracking system (EyeLinkTM, 
SensoMotoric Instruments GmbH, Teltow/Berlin). This system consists of a headset with a pair of 
infrared cameras tracking the eyes, and a third camera monitoring the screen position in order to 
compensate for any head movements. It has a temporal resolution of 250 Hz, a spatial resolution of 
0.01º, and a gaze-position accuracy relative to the stimulus position of 0.5° - 1.0°, largely 
dependent on subjects’ fixation accuracy during calibration. As the system incorporates a head 
movement compensation, a chin rest was sufficient to reduce head movements and ensure constant 
viewing distance.  
The images were presented in blocks of 10. Each image block was preceded by a 3 × 3 point grid 
calibration scheme.  
 
The images were presented in a dimly lit room on a 19” CRT display with a resolution of 800 × 
600, 24 bit color depth, and a refresh rate of 85 Hz. Active screen size was 36 × 27 cm and 
viewing distance 70 cm, resulting in a viewing angle of 29 × 22°. Every image was shown for 5 
seconds, preceded by a center fixation display of 1.5 seconds. Image viewing was embedded in a 
recognition task. 
 
Eye monitoring was conducted on-line throughout the blocks. The eyetracking data was parsed for 
fixations and saccades in real time, using parsing parameters proven to be useful for cognitive 
research thanks to the reduction of detected microsaccades and short fixations (< 100 ms). 
Remaining saccades with amplitudes less than 20 pixels (0.75 º visual angle) as well as fixations 
shorter than 120 ms were discarded afterwards [War03]. 
For every image and each subject i, the measurements yielded an eye trajectory Ti composed of the 
coordinates of the successive fixations fk, expressed as image coordinates : ),( kk yx

( ),...,,T 321
i iii fff=   (7) 

3.2. Human saliency map 
As a global representation of the set of all fixations fki, a human saliency map H(x) was computed, 
under the assumption that this map is an integral of weighted point spread functions h(x) located at 
the positions of the successive fixations. It is assumed that each fixation gives rise to a normally 
(gaussian) distributed activity. The width s of the activity patch was chosen to approximate the 
size of the fovea. A weighting of h(x) as a function of the fixation duration or position k in the 
trajectory was not considered . 
Formally, H(x) is computed according to Eq.8. 
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where  are the spatial coordinates of fixation f),( kk yx k in image coordinates. The right part of 
figure 3 shows an example of human fixations superimposed on the corresponding image and the 
created human saliency map. 

4. Comparison metrics 
Two different metrics are considered in order to compare human fixations and computer saliency 
maps: a correlation and a score measurement. An extensive description of each metrics follows. 

4.1. Correlation of human and saliency maps 
The first metric is defined by the correlation r between the computational and  human saliency 
maps. 
 
Let H(x) and S(x) be the human and the computational maps, respectively. The correlation 
coefficient r of the two maps is defined by Eq.9. 
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where Hµ  and Sµ  are the mean values of the two maps H(x) and S(x), respectively. 
The value of r lies in the [-1, 1] interval. A value of 1 indicates that both maps are exactly similar, 
a value of 0 indicates that both maps are totally different and a value of -1 indicates that the two 
maps are anti-correlated, i.e. that a salient feature in one map is not salient in the other one. 

4.2. Score s 
The score s, also called chance-adjusted saliency by Parkhurst et al. [Par02] is shown in figure 2 
and can be written according to Eq.10. 
 

ranfix ss −=s   (10) 
It corresponds to the difference of average values of two sets of samples from the computer 
saliency map S(x); fixs  refers to the set of N samples taken at the recorded human fixation 

locations, while rans  refers to N random samples. 
Considering N fixations fk from an eye trajectory Ti, the value of fixs  is computed according to 
Eq. 11. 

(∑
∈

=
T

kfix
k

Ss
f

f
N
1 )   (11) 

The average value of N random fixations in a saliency map S(x) is Gaussian distributed and 
centered at the mean value of the saliency map, µS, with an associated standard error of 

N
N

Sσ
σ = , where sS is the standard deviation of the saliency map. For simplicity, we take 

Srans µ= . 
Another possibility could have consisted in taking Nσµ += Srans  to consider the effective 
distance between the fixation driven samples and the “core” of the average random sample 
distribution. Practically, as long as the considered number of fixation N is high enough, sN can be 
neglected. 
All in all, the score s of equation 10 can be expressed by 
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Figure 2. Average values of the sampled saliency map: fixs  and distribution of rans . 

If the human fixations are focused on the more salient points in the saliency map, which we 
expect, the score should be positive. Furthermore, the better the model, the higher the similarity 
and the higher this score should be. 



The principal difference between the s score and the correlation metric is that the former avoids 
relying on parameters (i.e. s as used to create the human map) while the later is more “global” 
than the score s and is independent regarding the scaling of the considered saliency map. 

5. Experiments and results 
The experimental image dataset consisted in 41 color images containing a mix of natural scenes, 
fractals, and abstract art images. Most of the images (36) were shown to 20 subjects; the remaining 
5 were viewed by 7 subjects. We deem this not to be crucial for the ideas presented here. As stated 
above, these images were presented to the subjects for 5 seconds apiece, resulting in an average of 
290 fixations per image. 
For each image of the dataset, the human map H(x) was created with the parameter s = 37 pixels, 
which was chosen to approximate the fovea in our experimental system, and all fixations were 
taken into account. 
For all images, we also created a color saliency map Scol(x) = N( )+N( C ) and a grayscale 
saliency map S

chromĈ int
ˆ

gray(x) = N( ), according to equation 5. Both saliency maps are also normalized 
to the same dynamic range [0..255]. Then, a comparison of these 2 models with the human 
fixations was performed, following the metrics defined in chapter 4. Figure 3 shows an example of 
the different measurements and maps involved . 
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Figure 3. Overview of the different measurements and maps 



5.1. Color vs. grayscale, general results 
Table 1 presents the average scores s and correlation coefficients r over the whole experimental 
dataset, for both the color and grayscale models. The score s was computed taking the first 5 
fixations of each subject into account, since it has been suggested that, with regard to human 
observers, initial fixations are controlled mainly in a bottom-up manner. 
 
The main observation is that, based on both evaluation methods, the color model fares better than 
the grayscale one. More specifically, the color model yields an average score approximately 30% 
higher than the grayscale model. This underlines the usefulness of the color channel in the model 
and goes toward assessing that colors have a considerable influence on visual attention. 
 

 Score s r 
grayscale model Sgray(x) 25.4 .26 
color model Scol(x) 32.8 .34 

 
Table 1. Similarity measurements of the two computer models S(x) vs. human behavior 

5.2. Influence of the number of fixations 
Figure 4 presents the average score s taking different numbers of fixations into account for the 
calculation. Four cases were considered: (1) taking only the first fixation of each subject into 
account, (2) considering the average of the first three and then (3) five fixations respectively, (4) 
taking all fixations made over the whole viewing duration into account. From a temporal point of 
view, these four cases correspond to the first 0.5, 1, 2 and 5 seconds of observation, 
approximately. We observe a general decrease of scores with the considered number of fixations. 
This suggests that those features calculated by the model as the most salient ones are also foveated 
first by human observers. There is one exception to this trend, in the values based on the first 
fixation only. This might be due to the experimental design: As the subjects had to fixate the 
center of the screen before any image, the location of the first fixation might have been influenced 
by this starting point.  
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Figure 4. Average score s vs. number of fixations 

5.3. Model performance on individual images 
Figure 5 presents a few typical images of our database, sorted by their score s values on the color 
model. The images yielding the best results are found in the upper left; the ranking goes from left 
to right and top to bottom. As can be seen, the ranking based on the correlational metric would be 
very similar. 



The principal observation here is that the resulting scores and correlation coefficients are widely 
spread in the value range. It is apparent that the images found on the top row generally contain a 
few very salient features, such as the fish, the small house or the water lily, and yield the best 
results. On the other hand, images that lack highly salient features, such as the abstract art or the 
fractal images on the bottom row, result in much lower values. Nonetheless, there is only one 
image (out of 41) that yields a negative value (see figure 6); it is shown in the bottom right 
position in figure 5. 
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Figure 5. Some typical images from the experimental set, ranked by average values for the color 
model. Metrics values are given in the form: score s / map correlation in % 

5.4. Color vs. grayscale, individual results 
Figure 6 shows the correlation values ρ for the color and grayscale models, while figure 7 depicts 
the relative difference of score s between the color and grayscale models for each image. The 
relative difference is given by: 

( )graycol

graycol

s,smax

ss −
  (13) 

As seen on both figures 6 and 7, the color model yields better results than the grayscale one in the 
large majority of the images. These results confirm the tendency showed by the average results of 
sections 5.1 and 5.2 about the importance of the use of the chromatic channels in the saliency 
model. 
However, based on our hypothesis and in the perfect case, we would expect the results for the 
color model to be at least as good as the ones of the grayscale model, for all images. We can note 
that it is not the case for about 12% to 20% of the images (depending on the considered metric, as 
seen on figure 6 and 7), where the results for the color model are worse than the ones of the 
grayscale model. However, the difference is generally not very large and might be due to the fact 
that, in a few images, the color channel adds nothing but “noise” to the saliency map. 
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Figure 6. Correlation coefficients for individual images 
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 7. Relative gain of scores s for the color model vs. grayscale model for each image 

epresentative cases 
 8 presents three specific images with their corresponding computational and human 
y maps. Basically, one of the images fits better with the color model (road sign, 41), one 

ponds best with the grayscale model (a fractal, 5), and one results in low values in both cases 
nflowers, 32). The first image is representative of the large majority of the images which 

a better performance with the color model. The other two represent the fewer cases where 
not true. 
ad sign image permits to clearly see the influence of color in the visual attention process. 
, the blue road sign is not detected as very salient in the grayscale model, as opposed to the 
model. When looking at human behavior, it is evident that the panel is clearly the most 
 feature of the image, thus the importance of colors. 
nflower field image is also interesting: It results in very low values with all metrics, even if 
ight expect the results to be much better at first sight. In fact, on such an image, subjects are 
 focusing onto the horizon and forget about the flowers, maybe because there are a lot of 



them and they all look the same. Another downside of the saliency model is that it tends to favor 
the circumference of the flowers, while humans seem to focus on their center. This is a case where 
the computer saliency model totally fails to reproduce human behavior, due to the human tendency 
to focus on the horizon. 
Finally, in the fractal example, the grayscale model is superior to the color model. In fact, at first 
sight the maps are pretty close to each other, but the color component seems only to add “noise” to 
the saliency map in this case. This is especially well visible in the lower central part of the image. 
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Figure 8. Three representative examples with their corresponding human and saliency maps, s 
calculated with the first 5 fixations 

All in all, these results confirm the overall usefulness of color in the visual attention process and 
explain the few cases with a different behavior. 

6. Conclusion 
The work reported in this paper performs comparisons of computer models of visual attention with 
human attention as measured by recording eye movements of human subjects. The results follow 
from experiments involving over 40 images of different kinds and nature observed by 20 human 
subjects in most cases. 
The reported comparisons rely on the comparison of a computer saliency map with the set of 
fixation points extracted from the eye movements. For measuring their similarity, two different 
metrics were used - the correlation coefficient ρ and the score s - which each have their own 
advantages. 
The contribution of color in visual attention was quantitatively measured as the increase in 
similarity when the one-cue computer model for grayscale is replaced by the two-cues computer 
model for color. The similarity improvement, measured as the average on the whole dataset, is 
from ρ= .26 to .34 for the correlation coefficient, and from S= 25 to 33 for the score s. This 
assesses the average quantitative contribution of adding the chromaticity cue to a monochrome 
computer model of visual attention. 
Notwithstanding their different nature, both considered metrics yielded very similar results, be it 
while comparing color and grayscale models or when looking at the image rankings. 
A comparison of model performance when the number of considered fixation points is modified 
shows that on average, the few first fixations are better explained by the model than the set of all 
fixations of the complete eye movement record. 



Finally, a more detailed analysis of the model performance shows a rather large variation of 
results, depending on the kind of images. On the other hand, all but one images yield positive 
scores and correlation coefficients, which speaks for the quality of the model itself when compared 
to human vision. When compared to the grayscale model, the color one also lead to better results 
on a large majority of the image of the dataset. All in all, the results assess the usefulness of the 
chromatic cue in the model of visual attention and speak for the considerable influence of color on 
human visual attention. 
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