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Abstract 
The iterative closest point (ICP) algorithm is widely used for the registration of 
geometric data and it applies to a wide field of activities that range from 3D object 
modeling to object recognition. One of the its main drawbacks is its quadratic time 
complexity O(N2) with the shape size N, which implies heavy computations. 
Consequently, there is a need to speed up the ICP algorithm and several methods have 
been proposed. The most effective ones focus on reducing the closest point computation 
time and complexity like the k-D tree search or projection methods. This paper proposes 
a review of the existing fast ICP methods and places emphasis on a recently proposed 
solution that combines the neighbor search algorithm with a multiresolution scheme to 
create a very fast and robust ICP. Confirming the success of the latter, the results show 
that it is possible to gain speed up to a factor 1600 over the standard, non-accelerated ICP 
algorithm, while avoiding the tradeoff with matching quality that is imposed by many 
existing solutions. 
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Fast ICP algorithms for the registration of 3d data 

1. Introduction 
Shape registration consists in finding the correct alignment of two or more sets of data 
and plays an important role in today's computer vision. Advanced techniques for 3D 
object modeling often rely on registration to match the set of 3D views that is needed to 
cover the whole surface and create a complete model. Quality inspection and 3D object 
recognition are other examples of applications of the registration. 
In 1992, Besl introduced the iterative closest point (ICP) algorithm [BES], which is one 
of the best-known and widely used geometric matching algorithms. Starting from an 
initial rough alignment of the data, the ICP processes iteratively. At each iteration, it first 
creates closest point correspondences between two sets of points (or more generally 
geometric data) and then minimizes the average distance of the previously found 
correspondences by a rigid transformation - a translation and a rotation. 
The ICP algorithm has a complexity of O(NpNx), where Np and Nx basically represents 
the number of points of the datasets. Matching high-resolution data generally requires 
heavy computations and, consequently, there is a real need for ways to reduce ICP 
computation time. Several solutions to speed up the algorithm have been proposed and a 
review of the different techniques is presented in the next chapter. The main trouble 
encountered is that existing solutions often create a tradeoff between the speeding up and 
the quality of the registration. 
A new solution to accelerate the ICP is presented in this paper. In fact, it consists in the 
combination of two recently proposed methods to speed up the ICP. First of all, the 
neighbor search algorithm [JOS], which relies on neighborhood relationships in the data 
to restrict the search of the closest point to a local subset. Then, a multi-resolution 
scheme [JOSb] that proceeds from coarse to fine and successively improves a previous 
solution at the finer representation level. This solution for the speeding up of the ICP has 
been developed in a perspective to avoid the tradeoff with the registration quality that 
was mentioned above. 
This document is organized as follows. The next section presents the basic ICP algorithm 
and its principal variants and reviews the associated acceleration methods. Section 3 
briefly describes the key points of the neighbor search algorithm and the multiresolution 
scheme ICP. Typical results obtained with the proposed algorithm are presented in 
section 4. Finally, conclusions can be found in section 5. 

2. Fast registration with ICP 

2.1. Basic ICP algorithm and its variants 
The ICP algorithm registers two sets of points, P and X composed respectively of Np and 
Nx points, starting from an initial pose estimation. The algorithm proceeds iteratively. It 
first pairs every point of P with its closest point of X. These pairs are used to compute the 
rigid transformation (R, t) which, when applied to P, minimizes the coupling error e of 
the two data sets. The resulting transformation is then applied to set P and the iteration 
continues until a defined stopping criterion is fulfilled. 
Chen and Medioni [CHE] proposed a similar algorithm where couplings are made 
between points of one surface and plans parallel to the other surface. Several authors 
proposed to weight the point couplings [ZHA] [TUR] in order to make the ICP algorithm 
robust to outliers that typically appear when registering shapes of different sizes and 
when data sets overlap each other only partially. 



Others authors also suggested to use additional features, such as surface normals [BRE] 
or surface colors [SCH], to define point closeness or distance, in order to improve the 
quality of the registration. The ensuing ICP algorithm then requires less iterations for 
converging to a better position and it also improves the range of successful initial 
configurations [SCH]. 
Given d pk ,x( ) the function that measures the distance between a pair of points from the 
two sets, pk ∈P ,  x∈X, one iteration of the algorithm can be summarized as follows: 
1) Compute closest points: ∀pk ∈P  , xk = x ∈X  d pk ,x( )= min{ } 

2) Weight the couplings: define a wk for each couple 
3) Compute the best transformation, i.e. the rotation R and translation t that minimize 

e R,t( )= 1
W

wk Rpk + t − xk
N p

∑ 2 , W = wk
Np

∑  

4) Apply transformation (R, t) to P 
These steps are iterated and the algorithm stops when a defined criterion is reached, for 
example when the change in the coupling error ei falls below a threshold: ei−1 − ei < τ  or 
when the resulting best transformation is closer to identity than a threshold. 
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Figure 1. ICP algorithm principle 

2.2. Fast ICP algorithms 
The first step of the algorithm, closest point computation, has a complexity of O(NpNx), 
while steps 2 to 4 possess a complexity of O(Np). Consequently, the complexity of the 
ICP algorithm is O(NpNx) and, for large data sets, most of the time is spent for closest 
point computation. 
Several authors have proposed solutions to hasten the algorithm. Langis [LAN] recently 
presented a parallel implementation of the ICP and showed that a nearly linear 
performance improvement with the number of processors can be obtained with up to 16 
processors. Beside this hardware-oriented solution, one can separate the different 
methods into three main classes: reduction of the number of iteration, reduction of the 
number of data points and acceleration of the closest points search. A review of the 
different methods and their results are given in the next paragraphs. 



Reducing the number of iteration n 
In his original publication, Besl [BES] proposed a variation named "accelerated ICP". It 
uses a linear or quadratic extrapolation of the registration parameters to reduce the 
number of iterations. Simon [SIM] later proposed to decouple rotation and translation in 
the accelerated ICP to reduce the number of iterations further more. Typical results from 
these authors showed "accelerated ICP" and "decoupled" version to reduce computation 
time by a factor of 3 and 4.5 respectively. 
Rusinkiewicz [RUS] recently proposed a review of the influence of many variants of the 
ICP (as presented in 2.1) on the number of iterations. Most of them were shown to only 
have a marginal influence on it. 

Reducing the number of data points N 
Another way to reduce computation time is to reduce the number of points involved in 
the computation of closest points and best transformation. Some authors proposed to use 
a coarse to fine strategy. They execute the first iterations using a lower resolution, like 
1/4 or 1/5 of the points, and finish with fine matching using full resolution [ZHA][TUR]. 
In this case, the acceleration is greatly dependent on the number of iterations performed 
at the different resolutions. So far, few results have been published concerning multi 
resolution strategy. Zhang [ZHA] found a reduction factor of about 2 to 4. 
Chen and Medioni [CHE] proposed to use only subsets of the data named control points. 
As such, they suggested using points sitting in smooth areas, because normals and line 
plan intersections are more reliable in that case. This argument is valid when using point 
to plan distances but is of less importance for the ICP algorithm where point to point 
distances are calculated. Brett [BRE] applies an alternate mesh reduction algorithm to 
triangulated surfaces that keeps significant features (high curvature) and iteratively 
matches a reduced P mesh with X then a reduced X mesh with P. More ways of choosing 
control points exist, such as random choice or even distribution of the normals [RUS]. 

Speeding up the closest point computation 
The acceleration of the closest point search can be done using either search structures or 
projection methods. Search structures, like the k-D tree [ZHA] or the spherical triangle 
constraint nearest neighbor (STCNN) [GRE], permit to accelerate the search by 
restricting it to a subpart of the data. This allows to reduce the complexity of the closest 
point search – and of the ICP - to O(Np log Nx) with a k-D tree and up to O(Np) with the 
STCNN. 
The goal of projection methods is to speed up the closest point search by projecting 
points into one or more planes, reducing the problem to a 2D search. If scanner 
parameters are known, the reverse calibration [BLA] consists in projecting the points of 
one dataset into the range image of the second one, in the direction of the range camera. 
Projection in multiple Z-buffers [BENb] is another solution. Both these methods permits 
to reduce the complexity up to O(Np). 

2.3. Discussion 
An in-depth review and comparison of the different methods can be found in [JOSc] but 
here are the key points that we retained from it. 
Using the extrapolation of parameters, a reduction of the computation time by a factor of 
3 or 4 can be expected but at the risk of overshoot. The latter could at best eliminate the 
beneficial effect of the method but it could also cause the algorithm to converge toward a 
bad local minimum, which would be annoying. 



Using control points imply a reduction of the computation time linked with the number 
of control points. The less control points used, the better the acceleration of the ICP. On 
the other hand, less control points also means a bigger registration error. In this 
perspective, a coarse to fine approach would be preferred. We should also remember that 
these solutions don't change the overall cost of the ICP algorithm, which remains 
quadratic and, thus, is still subject to long computation time for large data sets. 
Search structure and projection method allow to reduce the complexity – theoretically up 
to O(Np) - and consequently have the best impact on the computation time of the ICP 
algorithm. For example, Zhang [ZHA] obtained a time reduction factor of about 15 for 
meshes containing about 2500 points when using a k-D tree and it should increases with 
the number of points. The main problem with search structures is that they lose most of 
their advantage when datasets are far from each other, which is generally the case in the 
first iterations of the ICP, and when additional features are used to define the closest 
point, which is useful to make the ICP more robust. 
Finally, projection methods permit a very good speeding up of the closest point search. 
On the other hand, projection methods only give approximations of the closest points, 
especially when datasets are only coarsely aligned, and are not very adapted to the use 
additional features. This can lead to bad matching and, consequently, the range of 
successful initial configurations tends to be much smaller when using these methods. 
One can note here that all three types of acceleration methods are quite independent and 
consequently can be combined together. For example, Simon [SIM] mixed accelerated 
ICP with k-D tree and Zhang [ZHA] used both coarse to fine strategy and k-D tree. Our 
solution, presented in the next section, also combines a coarse to fine strategy with a fast 
closest point search. 
To conclude, we can see that most of the existing solutions lead to a tradeoff between the 
speeding up and the quality of the registration – i.e. registration error and range of 
successful initial configurations [HUG]. 

3. Multiresolution neighbor search algorithm 
This section briefly describes the key points of the neighbor search algorithm and the 
multiresolution scheme ICP. Both methods are combined in order to create a fast ICP 
algorithm that also avoids any tradeoff with the quality of the registration. In-depth 
presentation and analyses of both algorithms are found in [JOS][JOSb][JOSc]. 

3.1 Neighbor search 
Recently, Jost [JOS] proposed the “neighbor search” closest point algorithm. Given that 
there exist neighborhoods V and V’ defined in respectively datasets P and X, it assumes 
that two neighbors on a surface possess closest points on the other surface that are 
neighbors as well. This neighborhood relationship assumption is illustrated in Figure 2. 
Points pi and pk of set P are within the same neighborhood V(pi), so their corresponding 
closest points in set X, xi and xk are also found within neighborhood V’(xk). 
The neighbor search algorithm uses this property to obtain a first approximation of the 
closest point and then refines the result with a local search. In Figure 2, if pi possesses a 
neighbor pk in data set P, with a know closest point xk in data set X, finding the closest 
point of pi can be reduced to searching the closest point in the neighborhood V’ of xk, 
V’(xk). This method permits to avoid a global search for most points and leads to a 
closest points search (and therefore ICP) algorithm that provides a complexity of O(Np). 
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Figure 2. The neighborhood relationship assumption 

Figure 3 presents the neighbor search performed in ranges images. Neighborhood V is 
the 3x3 window surrounding the point pi in P (V-8 neighborhood) and neighborhood V’ 
is a nxn window in X. In this case, we choose to scan the points of range image P row by 
row, starting from upper left. That way, the possible direct neighbors of pi with a known 
closest point, pk, can be found on the previous point in the same row and in the previous 
row (see image P on Figure 3). Those 4 possible candidates are just checked sequentially 
and the first one that possesses a known closest point is chosen as pk. 
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Figure 3. The neighbor search in range images 

3.2 Multiresolution scheme 
The principle of multiresolution ICP [JOSb] is to make the first few iterations using 
down sampled data and to further increase the resolution of the data in the following 
iterations, creating a coarse to fine matching. The main expected advantage of the 
multiresolution is the reduction of the computational cost, given that the duration of each 
iteration made at lower resolutions is reduced. In addition, it is expected this way that the 
total number of iterations will be reduced, mainly because a lower resolution matching 
generally implies more important rotations and translations, meaning a faster 
convergence. 



The multiresolution pattern chosen here is to divide the number of points by a factor N 
for each resolution step. The lowest possible resolution is defined by keeping the number 
of points of the reduced data sets above a minimum value (typically 50 or 100). 
The number of iterations at each resolution step isn’t set. Instead, the algorithm goes to 
the next resolution step automatically when a defined stop criterion is reached at the 
current one. 
Figure 4 shows a typical dataset at different resolutions steps. 
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Figure 4. Duck toy data at the different resolution steps 

4. Experimental results 
The presented fast ICP algorithm has been tested on different data and compared with 
other fast ICP algorithms using tree search and neighbor search alone. The comparison 
focuses on two features: computation speed and matching quality. The expected goal is, 
as said before, to speed up the algorithm while keeping the same quality of the matching. 
The following results have been obtained using surfaces of a duck toy measured with a 
structured light range finder, as seen in Figure 1. 

Computation speed 
Table 1 presents a comparison of the average total computation time for the successful 
registrations, using the different acceleration methods. One can see that the 
multiresolution and neighbor search combination is more than 25 times faster than a tree 
search fast ICP. This result is also expected to become higher for bigger data sets, due to 
the smaller complexity of the neighbor search algorithm. Finally, a look on the 
approximate gain in speed over a non-accelerated ICP algorithm shows that the presented 
fast ICP is over 1500 faster. 

 total time (s) number of 
iterations 

relative gain 
over k-D tree 

absolute gain 
in speed 

k-D tree 504.1 42 1.0 60 
n-search 259.0 90 2.0 117 
MR k-D tree 59.3 36 8.5 513 
MR n-search 18.8 34 26.8 1621 

Table 1. Comparison of the average computation time and gains of the registration using 
the different acceleration methods (n-search = neighbor search, MR = multiresolution) 

Matching quality 
Two measures can be considered to examine the quality of the matching procedure: the 
matching error and the domain of convergence. To compare the matching error, the 



resulting positioning of the successful registration has to be the same or at least in the 
same error range as when matching using exact closest points. It was the case with all the 
methods used in this chapter. 
To examine the domain of convergence, we used a method presented in [HUG] that 
compares the domains of successful initial configurations (SIC). We won’t enter into 
details but, basically, both datasets are registered starting from a lot of different initial 
rough positioning. Each registration is then compared to the correct known positioning 
and the results are plotted in a SIC-map, where a black sector represents a successful 
registration. Consequently, the more black sectors in a SIC-map, the bigger the SIC 
range (or domain) is. 
The neighbor search algorithm, like the projection methods, uses a heuristic closest point 
search to improve matching speed. Experimental results [JOSc] showed that the SIC 
range was getting smaller when higher resolution data were used unless the local search 
window was made bigger as well. This effect can be seen in Figure 5: the SIC range 
when using the neighbor search is much smaller than in the non-accelerated case. This is 
something we want to avoid. 

non-accelerated ICP neighbor search multiresolution
neighbor search  

Figure 5. . SIC-maps 

On the other hand, the results confirm that the multiresolution scheme does not affect the 
matching quality negatively and that it has beneficial effects when combined with the 
neighbor search algorithm, since the SIC range is again similar to the non-accelerated 
case. 

5. Conclusion 
This paper proposed a review of the ICP algorithm and the principal methods to speed it 
up. It also placed emphasis on a recently proposed solution that combines the neighbor 
search algorithm with a multiresolution scheme to create a very fast and robust ICP 
algorithm. 
Reviewing the main solutions for the speeding up of the ICP algorithm, it was shown that 
most of them imply a tradeoff between the gained acceleration and the quality of the 
resulting matching. More precisely, many solutions either reduce the range of successful 
initial configurations – a better initial positioning of the data is then needed - or enlarge 
the registration error. 
The presented ICP algorithm combines the use of the neighbor search algorithm with a 
multiresolution scheme. The neighbor search uses the assumption that two neighbors on 
a surface possess closest points that are neighbors on the other surface to easily obtain a 
first approximation of the closest point and then proceeds with a local search to refine the 
result. The chosen multiresolution scheme proceeds from coarse to fine and successively 



improves a previous solution at the finer representation level. This combination allows 
obtaining a very fast and robust registration of two datasets. 
Experimental results showed that when combining multiresolution with the neighbor 
search method, the registration is up to around 25 times faster than when using a tree 
search, which represents a gain of more than 1600 over a non-accelerated ICP algorithm. 
Moreover, the multiresolution scheme permits to maintain the range of successful initial 
configurations, as well as the registration error, unchanged. 
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