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ABSTRACT 

 
Nowadays, vision-based inspection systems are present in many stages of the industrial manufacturing process. Their 
versatility, which permits to accommodate a broad range of inspection requirements, is however limited by the time 
consuming system setup performed at each production change. This work aims at providing a configuration assistant that 
helps to speed up this system setup, considering the peculiarities of industrial vision systems. The pursued principle, which 
is to maximize the discriminating power of the features involved in the inspection decision, leads to an optimization 
problem based on a high dimensional objective function. Several objective functions based on various metrics are proposed, 
their optimization being performed with the help of various search heuristics such as genetic methods and simulated 
annealing methods. The experimental results obtained with an industrial inspection system are presented. They show the 
effectiveness of the presented approach, and validate the configuration assistant as well. 
 
Keywords: Visual inspection, vision systems, automatic setup, system configuration, heuristic search, decision, objective 

function 
 

1. INTRODUCTION 
In the automatic inspection field, advanced visual inspection systems perform a large and ever growing number of controls. 
These systems, however, require some tuning in order to perform efficiently on a specific task. Given the increasing  
complexity of the system, manual tuning becomes a major problem of an operator using such a system. Means for automatic 
tuning are required. 
Automatic optimization tasks in the vision field are numerous. Some example tasks recently investigated are: contour 
tracking with snakes1; pattern recognition in association with markov random field representations2; image restoration3; 
geometric transformation estimation by iterative closest point methods4. Among the few papers related to visual inspection 
systems and their optimization, the paper by Daniel and West5 describes a method for modeling shape variations of forged 
devices from samples. Using eigenvectors and an optimization algorithm based on an energy function he describes a way to  
unveil the mapping between process control parameters and shape deformation of the forged device allowing to optimize 
the production process. In the present paper, the focus is set on the optimization of a visual inspection system in order for it 
to minimize its error rate. 
A visual inspection system consists mainly of two parts: an image analysis and a decision part. The image of the device to 
be inspected, Y, is first analyzed with help of image analysis tools that produce a set of measurements M. This measurement 
vector is then classified by the decision module giving the final decision ω. Both steps may involve several parameters P 
that influence the output (decision) of the system. 
In order to tune the system, human operators execute the following supervised learning procedure. First, a certain number of 
good and bad representatives is drafted among the devices to be inspected. Then the visual inspection is performed and, 
depending on the system’s decision, some parameters might be modified. Inspections and modifications are performed until 
experimental decisions match the a priori good/bad partition. 
This setup process is not easy and can be time consuming. Furthermore it is approximate, in the sense that no hint on the 
confidence of decisions is available. In order to remedy these shortcomings, we developed a configuration assistant that is 
presented in this paper. The configuration assistant is designed to perform the parametric tuning automatically. The pursued 
idea is not only to enhance the decision module, as it is often the case, but also to maximize the discriminating power of the 
measurements. 



The performance of the visual inspection must be formulated in a way that permits a comparison between the expected and 
experimental results. Somehow, this comparison must be quantifiable and the resulting quantity be pertinent. We call this 
quantity the objective function F. This scalar function over the parameters of the system should trustfully represent the 
realization of the expected results, must be reliable and informative altogether. Thus, in order to find the best configuration 
for the system the idea is to use the objective function to measure its performance and to use search heuristics for exploring 
the parametric space spanned by P. Practically, a “good enough” solution is sufficient. 
This paper focuses on the design of a configuration assistant for an inspection system whose decision module consists of a 
so-called and-classifier. This type of decision is widespread in the industrial inspection field where checked devices have to 
satisfy multiple mandatory constraints.  

The paper is organized as follows. Next section describes the inspection system. We present in section 3 some ways to 
define the objective function appropriate for an and-classifier and present the methods used to perform the supervised 
learning. Section 4 presents the particular case of the configuration assistant applied to IC marking inspection. Results 
obtained with real data are presented in section 5. 

 
2.  INSPECTION SYSTEM 

 
Consider the inspection system of figure 1 which visually analyzes the image Y and provides a decision  for an object.  The 
analysis of the image may involve several parameters P that influence the resulting measurements M. The decision system 
using the measurements takes a decision ω about the inspected device. The decision rule may also have some degrees of 
freedom T that influence the outcome. 

Industrial visual inspection systems determine whether a produced device satisfies some requirements. Most of the time, all 
of these requirements have to be satisfied in order for a device to be labeled as good. These requirements are said to be 
mandatory: a device must satisfy the first requirement and the second and all others to be accepted. Hence the name of and-
classifier used here to designate the decision stage. 
Given the definition of figure 1 the requirements are formulated with respect to some measurements M and usually take the 
form of thresholds Ti. In addition, a convenient inspection system, has normalized measurements with high values for good 
devices. The decision rule of such a classifier is written as: 
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Figure 1: Structure of an inspection process 
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Given a set of devices represented by their digital image Y={Y1, Y2, …, Yn }, and given an a priori classification of this set 
of devices by a human operator ω∗(Y)={ ω∗(Y1), ω∗(Y2), …, ω∗(Yn)} the learning set is defined  as ΩL={Y, ω∗(Y)}. The 
learning set is the union of two subsets: the good and the bad device’s subsets. They are denoted here by Ωx (good) and Ωo 
(bad). 
Given the learning set, the goal is to find parameters P and T such that expected inspection performance on future objects is 
optimized. Next section presents objective functions as a measure for the expected performance as well as search methods 
for finding the optimum. 
 

3. OBJECTIVE FUNCTIONS AND SEARCH METHODS 
This section presents objective functions F used to measure the quality of the parameter’s configuration in a system whose 
decision stage is an and-classifier. It then introduces the search methods used to find the maximum of F, i.e. to find the best 
parametric configuration according to F. 
 
3.1. Objective Functions 

To optimize the expected system’s performance in a general context, the available learning set will be used. The goal is then 
to optimize the system’s performance over this learning set. A first and obvious way to evaluate this performance is the 
recognition rate, R, defined as the fraction of correct decisions. It is normalized and it takes its maximum value of 1 if and 
only if all devices of the learning set are correctly classified. Although R represents the aptitude of the system on the 
learning set, it is not a good function for practical use. First because it is quantified on a small number of levels 
(=Card{ΩL}) and is thus a rather rough function of the configuration. Furthermore it gives no hint on the confidence in the 
decision taken by the system. The main idea on the way to find a better performance measurement is to consider rather a 
function of the learning set’s measurements F({M}ΩL) than a function of the learning set’s partition F(ω). 
Two hypotheses about the system are made. First, it is believed that the learning set has been selected with care. Secondly, 
the performed image analysis is supposed to be adequate to provide discriminant measurements. If these two conditions are 
satisfied, then it is possible using the degrees of freedom of the system to find a configuration that performs faultless with 
the learning set (R=1). The optimal margin classifier idea used by Vapnik 6 has been employed here in order to minimize the 
risk of a sample’s misclassification over the learning set. It is also expected that this approach ensures a stable system 
behaving faultless with new devices (generalization) as long as they have representatives within the learning set.  
 
3.1.1 Objective function for 1-dimensional measurements 

Figure 2 displays the measurements My of a learning set of devices for a 1-dimensional pseudo and-classifier. The “x” 
symbols are the measurements of the Ωx subset. Conversely, the “o” symbols are the measurements of the Ωo subset. The 
vertical line denotes a fixed threshold T that has been preset.   

Figure 2: Objective function for 1-dimensional measurement space 

The objective function F for the optimal margin is defined here as the minimum distance between a measurement My and 
the threshold T conditional to an absolutely correct classification: 
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The objective function F takes the form    ),(min TMF YY L

δ
Ω∈

=  (3) 

If the threshold  is variable it can be optimized. The best position is at mid-distance of the closest pair of bad/good 
measurements. According to it, the objective function takes the form  
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Note that the value of both F and F’ is 0 when good and bad devices are not separable. 
 
3.1.2 Objective function for n-dimensional measurements 

The objective function for multidimensional and-classifiers relies on the same concepts as for the 1-dimensional case. Some 
definitions must be given in order to define its variants. 
Given the decision space D  spanned by the set of measurements, we define the acceptance space A of the classifier as the 
subspace of D  where the inspection system considers the measurements as belonging to an acceptable device. In the 
complementary rejection space the system rejects the devices: A  = D – A . The partition in A  and A of an and-
classifier is defined by the n thresholds. 

The objective function should reflect how far the measurements are from a wrong classification, i.e. from the wrong, or 
opposite, subspace. The minimum distance is still the main concern and so, the following objective function F is defined 
based on above definition: F is equal to the minimum distance, over the learning set, of a measurement to its opposite 
subspace. 
This can be either the distance of a good device to A , or the one of a bad device to A : 
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where “|| ||” denotes the minimum distance between a point and a subspace. Note that “|| ||”=0 when the point belongs to the 
subspace. The notion of distance “|| ||” is related to a metric. The distance functions take the following generic form for a Ln-

metric:  ( )nn
n

1

∑Δ= .  In one-dimensional case all metrics are equivalent, and so the definition of F is unique. This is 
not the case in n-dimensional spaces where objective functions will take distinct forms depending on the chosen metric. 
Figure 3 shows in 2-dimensional space the equipotential lines of F defined with 3 different metrics: L1, L2, L∞. It is visible 
that they only differ when multiple measurements compose the distance. 

 

  Figure 3: Acceptance subspace & contour plot of objective functions based on L1 , L2 , L∞ 

 

Given the good devices margin, defined as the minimum distance of any good device to  A :  
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and given the margin components δYi  for a bad device Y and component i:        

 ( )YiiYi MT −= ;0maxδ  , oY Ω∈  (7) 

(5) is rewritten with different metrics and fixed thresholds Ti: 

 

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛
= ∑Ω∈ x

i
YiY o

F δδ ;minmin1
 (8)

 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑Ω∈ x

i
YiY o

F δδ ;minmin 2
2

 (9)
 

( )[ ] ⎥⎦
⎤

⎢⎣
⎡=

Ω∈∞ xYiiY o

F δδ ;maxminmin

 (10) 

 

If the thresholds are variable they can be optimized according to the measurements of ΩL. The resulting acceptance 
subspace A must include all Ωx measurements and exclude all Ωo

 measurements. To formally define this constraint and have 
a convenient way to calculate the objective function, we define here a minimum acceptance space A *. Given the smallest 
measurement components of the good subset  
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A * is the subspace whose points P satisfy i min ∀≥ xii MP .  

So, the F’ objective function is defined similar to the 1-dimensional case as  half of the minimum distance of all Ωo 

measurement to A ∗.  
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Figure 4 displays acceptance spaces for a bi-dimensional classifier. Left hand displays the acceptance space A used with 
fixed thresholds and right hand displays the minimum acceptance space A ∗ used with variable thresholds. 

 Figure 4: Acceptance subspaces A and A* with fixed (left) or tunable thresholds (right) 
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given the double-margin components : 

    ( )YixiYi MM −=′ min;0max'δ  ,  (13) 
 

the (8), (9), (10) equivalent functions with configurable thresholds  are : 
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3.2. Search Methods 
 

Objective functions described before are defined over the measurements of the learning set which are depending on the 
parameters of the configuration. This dependency can take any form and is not restricted to be analytical. The number of 
parameters is not specified either. So practically objective functions of unknown and different nature will be found. The 
difficulty is to maximize over the set of possible configurations an objective function   F (P,T) of unknown nature. To do 
this we will use methods that are recognized as robust and efficient in such situations: genetic algorithms and simulated 
annealing. A third method called enhanced random is presented and also considered. 
One concern with the employed methods, is to avoid the replication of the problem to be solved. What cannot be tolerated, 
is a search method that would require some choices in order to function properly. It would just shift the parametric 
configuration problem to another level. Search methods must therefore be designed with versatility in mind in order for 
them to cope reasonably well with various tasks. 
 

3.2.1 Genetic algorithm (GA) 
For a general description of genetic algorithms we refer to existing documents 7, 8 and will restrict ourselves to the 
description of the particular implementation of  the simple genetic algorithm used in this work. Its initial population is 
selected randomly over {P}. The evaluation, or fitness function, is the objective function previously discussed. The roulette 
wheel selection scheme is applied. A non elitist replacement scheme associated with a high mutation rate (Pmut=0.1) and an 
explorative crossover method prevent the GA’s stagnation. We applied two crossover methods. First a standard multiple 
point crossover with a probability of 10% and more frequently (90%) a linear crossover scheme. The linear method creates 
two offspring located on the extended segment that connects both parents in {P} space. This process is illustrated in figure 
5. The probability density is constant all along the segment. 
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Figure 5: linear crossover process of the GA 

Population size is constant and small: 20 individuals. This choice allows a large number of generations to take place until 
the time limit stopping criterion is reached. 



 

3.2.2 Simulated annealing method (SA) 
The name of this method comes from its relationship with physical systems and their equilibrium states. The configuration 
is considered here as a set of possible states for the inspection system. Associated with each state is a scalar value called 
energy. Here, the energy of a state P is ε(P)=1-F(P). Transition from one state to another is given a probability that depends 
on their relative energy values and a parameter called temperature. The algorithm performs at each step such a transition. 
This process is called stochastic relaxation 3. The chosen algorithm works with a binary temperature schedule, alternating 
T=0 and T=∞. Figure 6 shows the flow diagram of the SA method: Starting from a randomly selected configuration (T=∞), 
gradient descent (T=0) is performed until a local minimum is reached; then if the stopping criterion is not satisfied, the 
process starts over.  

 

Figure 6:Temperature schedule of SA 
 
3.2.3 Enhanced random method (ER) 

This method combineds a random selection scheme with a probability density estimation. 

Figure 7: modification of ρ(P) 
 
The principle of this algorithm is to use the past results to increase the probability of finding a good solution in the future. 
At the beginning, as no result is available, the first parametric vector P is chosen randomly over the whole parametric space 
of the permitted values specified by the user  for the hidden configuration {P}. This random process is based on the 
assumption that all points Pi in {P} have the same probability to be a good solution and therefore to be chosen. In other 
words, the probability density ρ (P) is uniform over {P}. Then, to enhance the efficiency, the probability density is modified 
according to the results already obtained. This process uses the Parzen windows9 technique to approximate an unknown 
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density function of a data set over a variable. It uses a simplified ∏=
i

ii pP )()( ρρ
r

 that assumes the independence of the 

parameters. This gives a star-shaped modification of ρ (P) with a maximum at center (see figure 7). Of course, a maximum 
limit has to be set for ρ (P) in order to prevent a possible automatic selection of good tested settings. 
  

4. AN IC MARKING INSPECTION SYSTEM 
The experimental part is performed on an industrial inspection system in the context of visual inspection of integrated 
circuits markings. The inspection process checks the correctness of markings found on top of molded integrated circuit 
packages. These markings are either painted or laser burnt on the chip. An example of marking is shown in figure 8. The 
production environment is characterized by a high device throughput and a limited marking precision. In order to deal with 
these constraints, the visual inspection system possesses a number of efficient and versatile measurement and analysis tools 
that must be configured for optimal operation. 

 
Figure 8: SOT device inspected in a production line  

 
Decision to accept or reject a device for an eventual marking defect is based on two measurements : contamination factor 
M1 and missing factor M2. These measurements are calculated relatively to a reference (golden unit). Given Y and R the 
test and reference markings, we define the intersection pattern I=R∩Y(see figure 9). With the associated surfaces SY , SR, 
and SI  the measurements are written: 
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Figure 9: reference, test, and intersection patterns 

Both measurements are normalized. The contamination factor represents the fraction of the inspected marking’s surface that 
matches the reference and missing factor the fraction of the reference’s surface that is covered by the inspected device. Of 
course, reference and test are superposed during a parametrized preprocessing step. 
These measurements are simple. Their computation is fast and allows a high inspection throughput. They are versatile and 
apply to a broad spectrum of markings. Their disadvantage is that it is not obvious to set limit value for the acceptance of a 
marking. This led us to consider measurements thresholds as belonging to the configuration of the system, and accordingly 
to set their values with the configuration assistant. A device’s marking is rejected unless (M1 > T1) and (M2 > T2). 



The configuration associated with these measurements has 6 parameters. With the two configurable decision thresholds, it 
makes an 8-dimensional parametric space P={P1-6;T1-2}.  
Most of these parameters are concerned with the image processing of the inspected device. The effect of these parameters 
on the measurements is too complex to be analyzed. For example, P1 and P2 are offset values for the grayscale thresholds 
used when binarizing the reference and inspected images. The table below shows that the variation of P1 and P2 affects M1 
and M2 in a way that is difficult to describe. 
 

 SR SX SI M1 M2 

P1  
- 

  
? 

P2 - 
 

 
? 

 

 

Table 1 : Influence of system parameters on measurements 
 
In essence it shows how increasing values of P1 and P2 affect the parameters. The arrow           represents a 
decreasing value and  ‘-‘   a constant value; the mark ? denotes an unpredictable effect depending of the particular test 
image and reference. The fact is that the ways P1 affects M2 and P2 affects M1 cannot be predicted. So, varying only these 2 
parameters will already lead to totally unpredictable measurement changes. Far more complex is their dependance on all 6 
parameters.  
Here comes the configuration assistant ! It is used as follows. 
At beginning of a new production run, a selection of good and bad markings is chosen as a learning set. Each component of  
P is given a range of possible values resulting in a subspace P* of P. The automatic configuration, over P*, of the marking 
inspection system is then launched. It operates with one of the search methods described in 3.2 and with the objective 
functions defined previously (14), (15), (16). The automatic configuration search stops after a given amount of time and 
delivers the best configuration to be used for the marking inspection. The system is then ready to inspect the produced 
devices. 
 

5. EXPERIMENTS 
Experiments were conducted with several data sets and varying number of configuration parameters. All the search methods 
were tested long enough to gather statistically significant experimental results. 
 
5.1. Data 

The images of the devices were taken by standard RS170 monochrome imagers in our labs and in the production line of a 
customer. In the production line experiment, samples of “clean” markings were selected to make the Ωx subsets whereas Ωo 
subsets gathered really rejected printed markings. In the experiment, due to the unbalanced number of good versus bad 
provided markings at disposal, we had to “create” some bad devices. Synthetic defects are defects that were artificially done 
on good markings. These voluntary defects may take the form of scratches, written over, false marking, white/black tape 
stripes pasted over the marking. 

3 data sets are considered as described in table 2: 

 “74X” data set “SOT” data set “Casablanca” data set 
Origin Lab Lab Production line 
Type of defect Synthetic synthetic real 
# of parameters 3+2 4+2 5+2 
# of samples in Ωx /Ωo 10 / 10 21 / 36 20 / 20 

Table 2: Data sets used 

In this table, the number of parameters refers to the parameters automatically adjusted by the configuration assistant. These 
parameters are given possible discrete values belonging to a range; typically 10-20 allowed values per parameter. The 2 
additional parameters are the decision thresholds Ti. 



 

Figure 11 displays images of one “synthetic” defective, one good and one “real” defective devices. 

   
Figure 11: Images from inspected devices 

 
5.2. Nature of Objective Function 
The objective function measured with the Casablanca data set is plotted in figure 12 with 2 varying parameters. It is typical 
of the functions that were encountered in this work: it exhibits the three following characteristics. First the function takes 
zero value over the greatest part of the space. Secondly, the places where it takes non-zero values mostly form some 
connected regions. Finally the objective function is rather “regular” over these interesting regions. Thus, it can be expected 
that intelligent search heuristics will take advantage of these regularities of the objective function. 

  

 

 

Figure 12: Objective function F for Casablanca data 
 
5.3. Search Methods Comparison 
A score is defined for further performance comparison of search methods. Given the objective function F(P), we define the 
normalized objective function as : 

{ }[ ]PF
FFn r

max
= . (19) 

and call objective score  of a search the value of the highest Fn encountered during the search. 

To practically compute the objective score, an exhaustive search over the possible configurations was first performed to 
gather the complete information about F(P). Of particular interest is the global maximum of F over {P} used in (19). 
 

In order to compare the performance of the search methods, the mean objective score is plotted versus time (number of 
trials). A mean has to be used because of the intrinsic randomness of the used search methods, so only statistical results are 
significant. Figure 13 represents the mean objective score for the 3 search methods. The mean is computed over 100 trials. 
Results of a random search method are also displayed for comparison. The figure shows that the intelligent search methods 
GA and SA significantly outperform random selection. Enhanced random is less efficient. 



 

This plot gives also an indication of the acceleration that a method brings for the configuration of the system. With the 
intelligent search methods, the configuration becomes nearly optimal (normalized score>0.95) already after only a small 
number of iterations. Typical speedup of SA or GA methods against random method are between 5-20 when approaching 
near optimal solutions. The speedup factor when compared with an exhaustive search of all possible configurations is 
important (about 100 for 5 parameters ).  
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Figure 13: Mean  objective scores of the search methods 

The outstanding robustness of configurations obtained with the SA algorithm must be pointed out. This comes from the 
nature of the encountered objective function and from its  gradient descent scheme that increase the probability to propose 
settings whose neighborhoods are also good settings. 
  
5.4. Evaluation of the configuration 
Finally a check of the real quality of the found configuration is done by observing the measurements for the learning set. 
The working configuration assistant will not of course make the exhaustive search, it will be given a time period to perform 
the setting and it must find the best configuration during this period. The search method used here, is simulated annealing. 
To test the reliability 100 trials were performed each with a time period of 5 minutes, corresponding to approximately 3000 
marking inspections. These inspections represent only 0.15% of inspections required to perform an exhaustive search. 
According to the objective score, the median and worst settings are used on the learning set’s devices. Left half of figure 14 
shows measurements with median-setting and right half with worst-setting. Good and bad subsets are separated by a clear 
margin even with the worst setting.  
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Figure 14: Learning set measurements  with two different parameter configurations 

 



6. CONCLUSION 
This paper presented a configuration assistant for industrial visual inspection systems. With the help of carefully chosen 
objective functions and robust search methods, automatization of and-classifier based systems was achieved. This 
automatization relieves the human operator of the tedious setup of the inspection system and accelerates the process. The 
retained search methods, genetic algorithms and simulated annealing, showed to be typically much faster than a random 
search and drastically less time consuming than an exhaustive search.  
Another advantage of the configuration assistant is the improvement in reliability. As the setup is performed with an 
objective function based on measurements instead of the classification results, a confidence value of the setup exists in the 
form of the objective score. This value leads to a more trustable setup and gives new information to the operator. 
Future work will pursue and develop the presented method to other classifiers, the extension to multiclass decision systems 
being of interest. The various nature (continuous, discrete, ordered) of possible configuration parameters shall also be 
examined with respect to the search heuristics. The extension from a static to a dynamic configurator that learns during 
operation is a further subject of interest. 
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