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ABSTRACT 
 
Nowadays, vision-based inspection systems are present in many stages of the industrial manufacturing process. Their 
versatility, which permits to accommodate a broad range of inspection requirements, is however limited by the time 
consuming system setup performed at each production change. This work aims at providing a configuration assistant that 
helps to speed up this system setup, considering the peculiarities of industrial vision systems. The pursued principle, which 
is to maximize the discriminating power of the features involved in the inspection decision, leads to an optimization 
problem based on a high dimensional objective function. Several objective functions based on various metrics are proposed, 
their optimization being performed with the help of various search heuristics such as genetic methods and simulated 
annealing methods. The experimental results obtained with an industrial inspection system are presented, considering the 
particular case of the visual inspection of markings found on top of molded integrated circuits. These results show the 
effectiveness of the presented objective functions and search methods, and validate the configuration assistant as well. 
 
Keywords: Visual inspection, vision systems, automatic setup, system configuration, heuristic search 
 

1. INTRODUCTION 
In the automatic inspection field, advanced visual inspection systems perform a large and ever growing number of controls. 
These systems, however, require some tuning in order to perform efficiently on a specific task. Given the increasing  
complexity of the system, manual tuning becomes a major problem of an operator using such a system. Means for automatic 
tuning are required. 
Automatic optimization tasks in the vision field are numerous. Some example tasks recently investigated are: contour 
tracking with snakes1; pattern recognition in association with markov random field representations2; image restoration3; 
geometric transformation estimation by iterative closest point methods4. Among the few papers related to visual inspection 
systems and their optimization, the paper by Daniel and West5 describes a method for modeling shape variations of forged 
devices from samples, and its application to optimize the production process. In the present paper, the focus is set on the 
optimization of a visual inspection system in order for it to minimize its error rate. 
A visual inspection system consists mainly of two parts : an image analysis and a decision. The image of the device to be 
inspected, X, is first analyzed with help of image analysis tools that produce a set of measurements M. This measurement 
vector is then classified by the decision module giving the final decision ω. Both steps may involve several parameters P 
that influence the output (decision) of the system. 
In order to tune the system, human operators execute the following supervised learning procedure. First, a certain number of 
good and bad representatives is drafted among the devices to be inspected. Then the automatic inspection is performed and, 
depending on the system’s decision, some parameters might be modified. Inspections and modifications are performed until 
experimental decisions match the a priori good/bad partition. 
This setup process is not easy and can be time consuming. Furthermore it is approximate, in the sense that no hint on the 
confidence of decisions is available. In order to remedy these shortcomings, we developed a configuration assistant that is 
presented in this paper. The configuration assistant is designed to perform the parametric tuning automatically. The pursued 
idea is not only to enhance the decision module, as it is often the case, but also to maximize the discriminating power of the 
measurements. 
The performance of the visual inspection must be formulated in a way that permits a comparison between the expected and 
experimental results. Somehow, this comparison must be quantifiable and the resulting quantity be pertinent. We call this 
quantity the objective function F. This scalar function over the parameters of the system should trustfully represent the 
similarity of the results, must be reliable and informative altogether. Thus, in order to find the best configuration for the 
system the idea is to use the objective function to measure its performance and to use search heuristics for exploring the 
parametric space spanned by P. Practically, a “good enough” solution is sufficient. 



This paper focuses on the design of a configuration assistant for an inspection system whose decision module consists of a 
so-called and-classifier. This type of decision is widespread in the industrial inspection field where checked devices have to 
satisfy multiple mandatory constraints.  

The paper is organized as follows. Next section describes the inspection system. We present in section 3 some ways to 
define the objective function appropriate for an and-classifier and present the methods used to perform the supervised 
learning. Section 4 presents the particular case of the configuration assistant applied to IC marking inspection. Results 
obtained with real data are presented in section 5. 

 
2.  INSPECTION SYSTEM 

Industrial visual inspection systems determine whether a produced device satisfies some requirements. Most of time, all of 
these requirements have to be satisfied in order for a device to be labeled as good. These requirements are said to be 
mandatory: a device must satisfy the first requirement and the second and … to be accepted. Hence the name of and-
classifier used here to designate the decision stage. 
Given the definition of figure 1 the requirements are formulated with respect to some measurements M and usually take the 
form of thresholds Ti. A convenient inspection system, has normalized measurements with high values for good devices. 
The decision rule of such a classifier is written as: 
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Figure 1: Structure of an inspection process 

Given a set of devices represented by their digital image X={X1, X2, …, Xn }, and given an a priori classification of this set 
of devices by a human operator ω∗(X)={ ω∗(X1), ω∗(X2), …, ω∗(Xn)} the learning set is defined  as ΩL={X, ω∗(X)}. The 
learning set is the union of two subsets: the good and the bad device’s subsets. They are denoted here by Ωx (good) and Ωo 
(bad). 
Given the learning set, the goal is to find parameters P and T such that expected inspection performance on future objects is 
optimized. Next section presents objective functions as a measure for the expected performance as well as search methods 
for finding the optimum. 
 

3. OBJECTIVE FUNCTIONS AND SEARCH METHODS 
This section presents objective functions F used to measure the quality of the parameter’s configuration in a system whose 
decision stage is an and-classifier. It then introduces the search methods used to find the maximum of F, i.e. to find the best 
parametric configuration according to F. 
 
3.1. Objective Functions 

To optimize the expected system’s performance in a general context, the representative learning set will be used. The goal is 
then to optimize the system’s performance over this learning set. An obvious way to evaluate this performance is the 
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recognition rate, R, expressed as the fraction of correct decisions. It is normalized and it takes its maximum value if and 
only if all devices of the learning set are correctly classified. Although R represents the aptitude of the system on the 
learning set, it is not a good function for practical use. First because it is quantified on a small number of levels 
(=Card{ΩL}) and is thus a rather rough function of the configuration. Furthermore it gives no hint on the confidence in the 
decision taken by the system. So the point is to replace a function of the learning set’s partition F(ω) by a function of the 
learning set’s measurements F({M}ΩL). 
The function should evaluate the relevance of the measurements to make a decision. It could then be used with the help of 
parameters as a means to maximize the measurement’s discriminating power. Interesting functions are the ones that are 
related to the distance between measurements and decision boundaries, greater distances being better. 
 
3.1.1 Objective function in 1-dimensional space 

Figure 2 displays for a 1-dimensional and-classifier the measurements M of a learning set of devices. The “X” symbols are 
the measurements of the Ωx subset. Conversely, the “o” symbols are the measurements of the Ωo subset. The vertical line 
denotes a fixed threshold T that has been preset.  The objective function F is defined here as the minimum distance between 
a measurement Mi and the threshold T conditional to an absolutely correct classification: 
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Figure 2: objective function for 1-dimensional measurement space 

If the threshold  is variable it can be optimized. The best position is at mid-distance of the closest pair of bad/good 
measurements. According to it, the objective function takes the form  
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3.1.2 Objective function in n-dimensional space 

The objective function for multidimensional and-classifiers relies on the same concepts as for the 1-dimensional case. Some 
definitions must be given in order to define its variants. 
Given the parametric space P  spanned by the parameters to be set, we define the acceptance subspace A of an and-
classifier. Acceptance space is the subspace of P  where the inspection system considers the measurements as belonging to 
an acceptable device. In the complementary rejection subspace the system rejects the devices: A  = P – A . The partition 
in A  and A is defined by the n thresholds. 

The objective function should reflect how far the measurements are from a wrong classification, i.e. from the wrong, or 
opposite, subspace. The minimum distance is still the main concern and so, the following objective function F is defined 
based on above definition: F is equal to the minimum distance, over the learning set, of a measurement to its opposite 
subspace. 
This can be either the distance of a good device to A , or the one of a bad device to A : 
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where “|| ||” denotes the minimum distance between a point and a subspace. “|| ||”=0 when the point belongs to the subspace. 
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The notion of distance ( ||  || ) is related to a metric. The distance functions take the following generic form for a Ln-metric:  
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∑Δ= .  In one-dimensional case all metrics are equivalent, and so the definition of F is unique. This is not the 
case in n-dimensional spaces where objective functions will take distinct forms depending on the chosen metric. Figure 3 
shows in 2-dimensional space the equipotential lines of F defined with 3 different metrics: L1, L2, L∞. It is visible that they 
only differ when multiple measurements compose the distance. 

 

  Figure3: Acceptance subspace & contour plot of objective functions based on L1 , L2 , L∞ 

The choice of one particular metric system depends on high level considerations as it will be discussed in next section.  

If the thresholds are variables they can be optimized according to the measurements of ΩL. The resulting acceptance 
subspace must include all Ωx measurements and exclude all Ωo

 measurements. To satisfy this constraint and have a 
convenient way to calculate the objective function, we define here a minimum acceptance space A *. Given the smallest 
measurements of the good subset [ ])(minmin XMM iXix

xΩ∈
= , A * is the subspace whose points P satisfy i min ∀≥ ixi MP . So, 

the F’ objective function is defined in a similar way as in the 1-dimensional case as being equal to half of the minimum 
distance of a Ωo measurement to A ∗.  
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Figure 4 displays acceptance spaces for a bi-dimensional classifier. Left hand is an example with preset thresholds and right 
hand an example with minimum acceptance space. 

    

Figure 4: Acceptance subspaces with fix (left) or tunable thresholds (right) 

Next table displays the formulae of 3 different objective functions in the cases of adjustable and fixed decision thresholds 
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3.2. Search Methods 
 

Objective functions described before are defined over the measurements of the learning set. Measurements are depending on 
the parameters of the configuration. This dependency can take any form and is not restricted to be analytical. The number of 
parameters is not specified either. So, the goal is to maximize over the set of possible configurations an objective function   
F (P,T) of unknown shape. To do this we will use methods that are recognized as robust and efficient in such situations: 
genetic algorithms and simulated annealing. A third method called enhanced random is presented and considered. 
One concern with the employed methods, is to avoid the replication of the problem to be solved. What cannot be tolerated, 
is a search method that would require some choices in order to function properly. It would just shift the parametric 
configuration problem to another level. Search methods must therefore be designed with versatility in mind in order for 
them to cope reasonably well with various tasks. 
 
3.2.1 Genetic algorithm (GA) 
For a general description of genetic algorithms we refer to existing documents 6, 7. We will restrict ourselves to the 
description of the particular implementation of  the simple genetic algorithm (SGA) used in this work. Its initial population 
is selected randomly over {P}. The evaluation, or fitness function, is the objective function previously discussed. The 
roulette wheel selection scheme is applied. A non elitist replacement scheme associated with a high mutation rate (Pmut=0.1) 
and an explorative crossover method prevent the GA’s stagnation. We applied two crossover methods. First a standard 
multiple point crossover with a probability of 10% and more frequently (90%) a linear crossover scheme. The linear method 
creates two offspring located on the extended segment that connects both parents in {P} space. This process is illustrated in 
figure 5. The probability density is constant all along the segment. 
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Figure 5: linear crossover process of the GA 

Population size is constant and small: 20 individuals. This choice allows a large number of generations to take place until 
the time limit stopping criterion is reached. 



 
3.2.2 Simulated annealing method (SA) 
The name of this method comes from its relationship with physical systems and their equilibrium states. The configuration 
is considered here as a set of possible states for the inspection system. Associated with each state is a scalar value called 
energy. Here, the energy of a state P is ε(P)=1-F(P). Transition from one state to another is given a probability that depends 
on their relative energy values and a parameter called temperature. So the algorithm performs at each step such a transition 
between two states (configurations). This process is called stochastic relaxation 3. The chosen algorithm works with a 
binary temperature schedule, alternating T=0 and T=∞. Figure 6 shows the flow diagram of the SA method: Starting from a 
randomly selected configuration (T=∞), gradient descent (T=0) is performed until a local minimum is reached; then if the 
stopping criterion is not satisfied, the process starts over.  

 

Figure 6:Temperature schedule of SA 
 
3.2.3 Enhanced random method (ER) 

This method combining a random selection scheme with a probability density estimation is expected to be versatile and to 
perform well on any kind of objective function.  
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Figure 7: modification of ρ(P) 

 
The principle of this algorithm is to use the past results to increase the probability of finding a good solution in the future. 
At the beginning, as no result is available, the first parametric vector P is chosen randomly over the whole parametric space 
of the permitted values specified by the user  for the hidden configuration {P}. This random process is based on the 
assumption that all points Pi in {P} have the same probability to be a good solution and therefore to be chosen. In other 
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words, the probability density ρ (P) is uniform over {P}. Then, to enhance the efficiency, the probability density is modified 
according to the results already obtained. This process is quite similar to the Parzen windows8 used to approximate an 
unknown density function of a data set over a variable. The modification of ρ (P) is done for all single variables considered 
independently. This gives a star-shaped modification of ρ (P) with a maximum at center (see figure 7). Of course, a 
maximum limit has to be set for ρ (P) in order to prevent a possible automatic selection of good tested settings. 
  

4. AN IC MARKING INSPECTION SYSTEM 
The experimental part is performed on an industrial inspection system in the context of visual IC marking inspection. The 
inspection process checks the correctness of markings found on top of molded integrated circuit packages. These markings 
are either painted or laser burnt on the chip. The high throughput and limited precision of production have two 
consequences for this IC control. The chips markings will likely exhibit some variations, and the inspection system must be 
quick. An example of marking is shown in figure 8. 

 
Figure 8: SOT device inspected in a production line  

Decision to accept or reject a device for an eventual marking defect is based on two measurements : contamination M1 and 
missing character M2. These measurements are calculated relatively to a reference (golden unit). See figure 9. Given X and 
R the test and reference markings, given their intersection R∩X, we define the contamination pattern C=X–(R∩X) and the 
missing pattern M=R-(R∩X). With the associated surfaces SX , SR, SC and SM, the measurements are written:  

X

CX

S
SS

M
−

=1  , 
R

MR

S
SSM −

=2 . 

Figure 9: missing and contaminated areas (“R” is the reference) 

Both measurements are normalized. Contamination represents the fraction of the inspected marking’s surface that matches 
the reference. Missing character the fraction of the reference’s surface that is not covered by inspected device. Of course, 
reference and test are optimally superposed during a preprocessing step. 
These measurements are fast to compute and allow a high inspection throughput. They are versatile and apply to a broad 
spectrum of markings. Their disadvantage is that it is not obvious to set limit value for the acceptance of a marking. This led 



us to consider measurements thresholds as belonging to the configuration of the system, and accordingly to set their values 
with the configuration assistant. A device’s marking is rejected unless (M1 > T1) and (M2 > T2). 
The configuration associated with these measurements has 6 parameters. With the two configurable decision thresholds, it 
makes an 8-dimensional parametric space P={P1-6;T1-2}.  
Most of these parameters are concerned with morphological operations on the image of the inspected device. Of course, the 
dependence of the measurements on these parameters cannot be described analytically. Furthermore, the effects of one 
parameter depend on the other parameter’s values. For example, P1 and P2 are offset values for the grayscale thresholds used 
when binarizing the reference and inspected images. The table below shows that the variation of P1 and P2 affects M1 and 
M2 in a way that is difficult to describe. 

 SX SR SM SC M1 M2 

P1 -     ? 

P2  -   ?  

 
           represents an increasing value and        a decreasing value. ? denotes an unpredictable effect depending of the 
particular test image and reference. So, varying only these 2 parameters will already lead to totally unpredictable 
measurement changes. Here comes the configuration assistant! 
 
We shall now select an objective function F for this task. 
The decision thresholds are configurable so just a metric has to be chosen. The two metrics L1 and L∞ were considered.  
Experiments with the L∞ metric led to disastrous results with only one measurement being still significant. Considering the 
contour plots of objective functions defined with L1 and L∞ metrics (fig.10) and the associated gradients, a possible 
explanation appears. If all measurements of Ωo are located on the same side of the separation line S, the objective function 
based on L∞ will increase the gap according to only one of the measurements, making probably the second one useless !  
So, L∞ was no more considered in this application and the chosen objective function was defined on the L1 metric. See table 
of section 3.1 .  
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Figure 10:Gradients of the objective functions defined with L1 and L∞ metrics 
 

5. EXPERIMENTS 
Experiments were conducted with several data sets, varying number of configuration parameters. All the search methods 
were tested long enough to gather statistically significant experimental results. 
 
5.1. Data 

3 data sets are considered : 

 “74X” data set “SOT” data set “Casablanca” data set 
Origin Lab Lab Production line 
Type of defect synthetic synthetic real 
# of parameters 3+2 4+2 5+2 
# of samples in Ωx /Ωo 10 / 10 21 / 36 20 / 20 

In this table, “real” means effective defects found in production. Synthetic defects are voluntary defects such as: scratches, 
written over, false marking, white/black tape stripes pasted over the marking. The number of parameters refers to the 
parameters automatically adjusted by the configuration assistant. These parameters are given possible discrete values 

A* 



belonging to a range; typically 10-20 allowed values per parameter. The 2 additional parameters being the decision 
thresholds Ti. 

Figure 11 shows two samples of bad devices. 

  
Figure 11: one synthetic (74x) and one real bad device  

 
5.2. Example Objective Function 
The objective function measured with the Casablanca data set is plotted in figure 12 with 2 varying parameters. It is typical 
of the functions that were encountered in this work: it exhibits the 3 following characteristics. First the function takes zero 
value over the greatest part of the space. Secondly, the places where it takes non-zero values mostly form some connected 
regions. Finally the objective function is rather “regular” over these interesting regions. Thus, it can be expected that 
intelligent search heuristics will take advantage of these regularities of the objective function. 

  

 

 

Figure 12: Objective function F for Casablanca data 
 
5.3. Search Methods Comparison 

First, an exhaustive search over the possible configurations was performed to gather the complete information about F(P). 
Of particular interest is the global maximum of F over {P} as it will be used as reference value to rate the search methods 
performances. 
Then, the search algorithms were evaluated with this experimental objective function F(P): they search a setting Pmax that 
maximizes F within a given number of trials. As the true maximum of F over {P} is known, the objective function can be 
normalized:    
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F’ expresses how good relatively to the optimum, a proposed parametric setting is. Objective score S is defined here as the 
highest value of F’ found at a given time of the system’s configuration. 
In order to compare the performance of the search methods, the mean objective score is plotted versus time (number of 
trials). A mean has to be used because of the intrinsic randomness of the used search methods, so only statistical results are 
significant. Figure 13 represents the objective score for the 3 search methods. Results of the pure random method are also 
displayed for comparison. The figure shows that intelligent search methods GA, SA outperform random selection. 
Enhanced random is a bit less efficient. This plot gives also an indication of the acceleration that a method brings for the 
configuration of the system. The configuration becomes fast nearly optimal. The speedup factor when compared with an 
exhaustive search of all possible configurations is important (about 100 for n=5). Typical speedup of SA or GA methods 
against random method are between 5-20 when approaching near optimal solutions.  
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Figure 13: Mean  objective scores of the search methods over 100 trials 

 
The outstanding robustness of configurations obtained with the SA algorithm must be pointed out. This comes from its  
gradient descent scheme that increase its probability to propose settings whose neighborhoods are also good settings. 
  
5.4. Evaluation of the configuration 

Finally a check of the real quality of the found configuration is done by observing the measurements for the learning set. 
The working configuration assistant will not of course make the exhaustive search, it will be given a time period to perform 
the setting and it must find the best configuration during this period. The search method used here, is simulated annealing. 
To test the reliability 100 trials were performed each with a time period of 5 minutes, corresponding to approximately 3000 
marking inspections. These inspections represent only 0.15% of inspections required to perform an exhaustive search. 
According to the objective score, the median and worst settings are used on the learning set’s devices. Left half of figure 14 
shows measurements with median-setting and right half with worst-setting. Good and bad subsets are separated by a clear 
gap even with the worst setting.  
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Figure 14: Measurements of the learning set with two different parameter’s configuration 

 
6. CONCLUSION 

This paper presented a configuration assistant for industrial visual inspection systems. With the help of carefully chosen 
objective functions and robust search methods, automatization of and-classifier based systems was achieved. This 
automatization relieves the human operator of the complex setup of the inspection system and accelerates this process. The 
retained search methods, genetic algorithms and simulated annealing, showed to be typically much faster than a random 
search and drastically less time consuming than an exhaustive search.  
Another advantage of the configuration assistant is the improvement in reliability. As the setup is performed with an 
objective function based on measurements instead of classification, a confidence value of the setup exists in the form of the 
objective score. This value leads to a more trustable setup and gives new information to the operator. 
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