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Abstract

We propose in this paper a new class of vision-based
behaviors that provide navigation with self-positioning
to an autonomous mobile robot. Self-positioning is
performed by servoed homing behaviors that use sim-
ple visual features of the environment as homing sites,
such as landmarks, wall corners or ceiling structures.
We show that self-positioning provides means for the
robot to learn the spatial structure of unknown envi-
ronments, by building a map of homing sites and paths
between them. Unlike other localization methods, a
geometric reconstruction of the environment from the
sensors is not needed. Three implementations of hom-
ing behaviors as well as results from experimental tests
using a real robot are presented.

1 Introduction

One of the problems autonomous mobile robots are
confronting is knowing the robot position and orienta-
tion (or configuration) with respect to an internal de-
scription of the environment. It is often observed that
using odometric sensors is not sufficient for controlling
the robot: additional information on the environment
is necessary. This can be obtained by adopting exte-
roceptive sensors that react to features of the environ-
ment, such as tactile sensors, range-finders and vision
sensors.

Using stereoscopy (2 or 3 cameras) or dynamic vi-
sion (single mobile camera) techniques, a geometric
model of the environment can be reconstructed and
matched against a predefined model (a map) in or-
der to estimate the robot position. This is known as
the positioning approach, which is essentially robot-
centric: it consists in reconstructing the environment
from the robot sensors point of view. This is a rather
complex problem that requires heavy computation
and for which most of the efforts while trying to solve
it generally aim at coping with the unstable nature of
both robot resources and the real world.

Reconstructing a geometric model of the environ-
ment is not always needed. Simple tasks such as fol-
lowing a wall or going to an object may be amenable
to behavior-based approaches. Behaviors may con-
trol the robot by servoing its moves to low-level vi-
sual primitives, such as points and segments extracted
from image sequences, that are related to features and
structures of the environment. However, a common
problem of the behavior-based approach is that it is
difficult to solve typical navigation problems such as
”bring a chair to the cafeteria”, because the robot in-
teracts with the environment via reactive behaviors
that are not mapped in space [3].

We propose a new class of vision-based behaviors
that provide navigation with self-positioning to au-
tonomous mobile robots using servoing techniques.
We understand here self-positioning (or homing) as
the action of finding a stable state relatively to the
environment in terms of visual primitives in an image
or a set of images. Servoing can be realized by means
of visual- or position-based approaches.

Visual servoing is fully world-centric: the environ-
ment drives the robot via its sensors. Hence, no com-
plex scene reconstruction is required and the robot
moves are directly bound to the visual primitives in
the sensed image(s). Position servoing needs to esti-
mate the robot sensor position and orientation rela-
tively to an environment feature, by interpreting the
visual information of the object as captured in one or
more images. Although no true geometric reconstruc-
tion of the environment is engaged, accurate models
of the camera and the robot and strong features such
as the object distance from the camera or the object
dimension are required.

Self-positioning may have different aspects depend-
ing on the sensor that is used for the implementation.
Docking, which is sometime used to describe the spe-
cific action of driving the robot to a power supply
base, is a special case of self-positioning. We devel-
oped several servoed behaviors that home the robot
relatively to reflective landmarks, ceiling structures or



wall corners (see Figure 1).

Figure 1: NOMAD robot self-positioning on a corner
site using a horizontal laser line-stripping vision sensor
(which trace is visible on the corner of the wall). A
second camera is placed vertically for self-positioning
on ceiling structures.

The ability of learning the environment structure
for an autonomous robot is critical, since manual in-
put of features and structures most natural for humans
may not correspond well to features and structures to
which the robot has sensory access, especially within
a behavioral context. Learning relates here to charac-
terizing new homing sites, as well as building a map of
sites in the environment and paths between them for
navigation. An advantage of using self-positioning is
the independency and modularity of the homing be-
haviors. All the details concerning a particular self-
positioning implementation are handled internally and
may be easily changed without affecting other ele-
ments in the behavioral architecture. Furthermore,
the noisy and unstable nature of sensors does not have
to be handled directly in the learning process.

Positioning, localizing and the self-positioning ap-
proach we propose here are represented in a rather
basic hierarchical model in Figure 2, for which each
layer needs the underlying structure to be functional.
The robot control is split in three reasoning layers
with increasing execution times: the low-level con-
trol layer binds the robot sensors and actuators in a
loop that is assumed continuous; the mid-level stim-
ulus/response automaton operates at fixed periods of
time, while the top-level reasoning layer needs multi-
ple periods to anticipate and plan present and future

Figure 2: Three basic reasoning layers that control the
robot actions.

actions. Self-positioning servoes the robot actuators
to visual primitives and may be associated with the
bottom control level. Positioning operates discontin-
uously due to heavy computational needs (mainly for
scene reconstruction) and corresponds to the mid-level
reasoning level, while localization has to plan possibly
multiple strategies for recovering the robot position in
an input map and corresponds to the top reasoning
layer.

The rest of this paper is organized as follows. The
following section retraces related work in vision-based
mobile robotics. Section 3 presents the vision-based
architecture we developed for our mobile autonomous
robot. Section 4 details homing sites and their charac-
terization. Section 5 briefly presents a simple scheme
for navigating using learned homing sites. Examples
of homing behaviors that we developed and tested on
a real robot are presented in section 6. Finally, section
7 concludes this paper.

2 Related work

The problem of localizing and positioning the robot
in a predefined input map has been widely studied.
Localization (or self-localization) consists in recogniz-
ing the environment and is usually first applied for cor-
rectly initializing a positioning loop. Positioning often
use sensing techniques based on stereoscopy [12] or dy-
namic vision [11, 20]. A drawback is that handling
sequences of images (from multiple or mobile cam-
eras) for reconstructing a model of the environment
leads to the difficult problem of sensor fusion [6, 14].
Hence, probabilistic methods are usually applied for
weighting new sensed data based on an estimate of
their reliability [27]. Other approaches based on non-
probabilistic methods propose simplified models, such



as the set membership principle, for handling the same
data [5, 24]. As reported in [10], the weakness of
these methods is that they do not capture the relevant
physics of the robot resources. A sensor will most of
the time yield good or even excellent measurements
of environment features, but sometime return irrele-
vant data. This unstable behavior has been extremely
difficult to capture in any robust model.

A study of robot homing using combinations of
model views is presented in [7]. Two methods are
discussed. The first one computes the position of the
robot in an input map of the environment to deter-
mine the direction to a target. The second method
is adaptive; it uses a predetermined homing pattern
that is aligned with a model to compute the direc-
tion to the target (positioning is not required). More
generally, an overview of related work in vision for mo-
bile robots shows that most of the efforts have been
brought to 3D or 2D geometric reconstruction, but
that little work has been dedicated to visual or posi-
tion servoing for autonomous mobile robots. It seems
however particularly interesting to build simple behav-
iors based on vision that servo robot moves in order
to get real-time interaction with the environment.

Among work in position and visual servoing for
robot manipulators, various problems have been raised
concerning the modelling of camera motion relatively
to signal variations in the image [17, 18]. The impor-
tance of correctly trimming the models the servoing
behavior interaction has also been pointed out [19, 23]:
a slight variation in this matrix and the end effector
position should result in a slight variation in the im-
age. Position servoing implementation are often dy-
namic, with acquisition and interpretation steps run
simultaneously [15, 16]. In [25], an adaptive tech-
nique is used for the control of a robot constrained
to 3 degrees of freedom. Position servoing has been
mainly applied to robot manipulators control with a
camera mounted on the end effector, while visual ser-
voing techniques are usually preferred for autonomous
vehicle guidance in trajectory control on simple roads
such as highways.

3 The vision-based behavioral archi-
tecture

The behavioral concept aims at designing simple
autonomous behaviors that grouped together may per-
form structured tasks in real worlds. The behavioral
approach is inspired to some extent by the animal
world. A behavior may be described as an indepen-
dent stereotyped action that is maintained by a spe-
cific perceived stimulus [21, 26].

MANO (Mobile Autonomous NOmad-200) is our

implementation of the behavioral approach [3, 4]. It
consists of a development and experimentation en-
vironment based on a mobile robot, dedicated vi-
sion hardware and a number of interconnected work-
stations. This environment offers features such as
network-wide development and experimentation capa-
bilities, virtual robot interface (allowing equivalent ex-
perimentation on simulator or real robot) and multi-
language support.

Figure 3: Layered architecture of the MANO behav-
ioral system.

Usually, several behaviors can be activated simul-
taneously, provided they are not competing for a com-
mon resource. The selection of one or more behavior
is performed according to a decision scheme dictated
by a planner. In the behavioral concept, planning acts
on the system by allowing behaviors to run or not and
is thought to handle in interaction with some model
representation of the environment in form of a map
(see Figure 3).

Vision-based behaviors are characterized by the
fact that their stimulus is a visual primitive that
triggers and maintain the behavior active as long as
it exists. The vision systems we use are described
in [8, 9, 22]. Examples of vision-based behaviors we
developed for the MANO architecture are going to-
wards a landmark, going along a wall, avoiding ob-
stacle, mapping, pushing chairs, homing on landmarks
and homing on corners. Of course, the planner also
relies on behaviors based on other sensor devices such
as odometers, IR sensors and sonars.



4 Characterizing homing sites in un-
known environments

A homing site is a feature or a collection of features
in a region of the environment that may stimulate a
homing behavior. Examples of features are wall cor-
ners, retro-reflective landmarks, doors, windows and
fluorescent tubes. Under the action of a homing be-
havior, the robot moves are directed towards a neutral
configuration, which is the center of the homing site.

4.1 Homing sites in the robot configura-
tion space

Our robot has four degrees of freedom (i.e. the
turret and base can be steered independently): the
parameters x and y describe the robot position on
the ground plane, θ the robot base orientation and
ψ the turret orientation. Let us consider a 4D hyper-
map of the environment, for which each element si(X),
X = (x, y, θ, ψ), takes a Boolean value representing
the stimulus state of a homing behavior Hi. More
formally we have

si(X) =

{
1 if Hi is stimulated
0 otherwise

(1)

The set of configuration points Si = {X | si(X) =
1} represents the region of the robot space for which
the homing behavior Hi will be stimulated. We call
this region the capture zone. The size and shape of the
envelope bounding Si partly depends on fixed param-
eters of the homing behavior (for example the sensor
field of view), but may also vary for different homing
sites. Factors such as the quality and the structure
of the environment feature(s) creating the site can re-
duce, but not increase, Si.

The center of the homing site towards which the
robot moves are directed is denoted by Ci. Note that
Ci is not the center of mass of Si, but depends on the
constraints that are applied to the visual primitives
for one particular homing behavior.

Figure 4 shows an example of capture zone mod-
elled for a homing behavior based on a range-finder vi-
sion sensor. The visual primitive is the corner formed
by the intersection of the two perpendicular walls and
the site center Ci corresponds to the origin of the co-
ordinate system. As shown in the example, the size
of the capture zone in the robot configuration space
is usually limited by obstacles in the environment (in
this case the corner site itself). The shape and size
of the capture zone may vary considerably for other
homing behaviors, but is usually a closed surface.

Cases may arise for which the visual primitives are
hidden by an obstacle for a subset of Si, resulting in

Figure 4: example of a capture zone in the robot 3D
configuration space. For sake of simplicity, the turret
orientation is constrained here to ψ = θ and the robot
is a single 0-dimensional point.

one or more holes on the capture zone surface. Be-
sides, degenerated cases with more than one site cen-
ter Ci are possible.

Normally, when the homing is finished, the robot
does not end up exactly at Ci, but rather in an un-
certainty region centered on Ci, which size is much
smaller than that of the capture zone. Various ap-
proaches may be used to model this uncertainty re-
gion [1, 5, 6]. Their application is however outside the
scope of this paper.

4.2 Site learning and validation

An important issue in a behavioral architecture is
stability: behaviors that may drive the robot in unsta-
ble situations are not suitable for autonomous naviga-
tion. Stability depends partly on the homing behav-
ior and partly on the nature of the homing site, which
may have characteristics that differ slightly from the
ideal site the homing behavior was programmed for.
Hence, for a fixed homing behavior, the structure of
the environment in terms of homing sites has to be
characterized.

The robot may learn new homing sites by wander-
ing in an unknown environment and monitoring the
homing behaviors stimuli. When the robot is trapped
in the capture zone of a homing site candidate, instead
of moving directly towards the site center, it follows
a specific pattern of moves that are measured locally
(for example by the odometric sensors) along the cap-
ture zone boundary, so that part of the set of points



Si can be estimated.
Let us denote by Ωi the closed surface bounding Si.

The characterization of Ωi in the configuration space
from a reasonably small subset of Si is not an easy
task. Instead, we consider Ω′

i, a projection of Ωi on
the ground plane that is approximated by a polyhedra.
In most cases, Ω′

i contains enough information about
Ωi for the validation and navigation processes.

When a new site candidate is found, the following
criteria are applied and the site accepted if one is sat-
isfied (P denotes the perimeter and S the surface):

1. there is only one Ci

2. smin < S(Ω′
i) < smax

3. P(Ωi)
S(Ωi)

< kmax

The first and second criteria are self-explicit. The
third criteria provides a way to determine the homo-
geneity of Ω′

i (smooth boundary). The constants smin,
smax and kmax are fixed for a given homing behavior.
If all of the criteria applies, the site candidate is as-
sumed to preserve stability and its characteristics are
stored in a map.

5 Navigation with homing sites

A particularly critical aspect for a human is the
design of a structured task within a behavioral con-
text; there is a gap between what the robot may sense
in terms of behavior stimuli and how the human per-
ceives a particular situation. Self-positioning helps in
reducing this gap by providing navigation to the robot
in terms most suitable to human perception. Navigat-
ing with self-positioning comes down to monitoring
the robot moves between homing sites, for example
by using the robot odometric sensors.

For autonomous navigation, it may be desirable to
have the robot build and maintain a map of the envi-
ronment by itself. An advantage of self-positioning is
that it provides means for the robot to learn the struc-
ture of the environment by reducing its huge state
space to a small amount of homing sites and paths.
An internal representation is needed, so that the se-
quence of moves and homing sites may be inverted and
retraced at any time. Several approaches have been
proposed in the literature for map representation: ge-
ometric, probabilistic (which retain some properties of
the geometric representation), occupancy grid, graph-
based or topological. Among them, the graph-based
representation usually mixes properties of some or all
the other representations [13].

We describe the environment by a graph-map M
defined by

M = (H,P ) (2)

where H is a set of vertices describing the hom-
ing sites and P a set of edges describing the rela-
tive geometrical (or odometric) paths binding two sites
(hi, hj). The graph-map M is restricted to cycles of
length greater than 2, so that it does not contain re-
dundant paths between two same sites. By keeping
an edge path short, navigation can take advantage of
the relative accuracy of odometric sensors on short
distances (see Figure 6).

6 Implementation and experimenta-
tions

We developed three homing behaviors for evaluat-
ing the self-positioning concept on a real robot. They
are all based on different vision systems and are there-
fore stimulated by different features of the environ-
ment, which location is not known a priori. Some
features may however be placed intentionally in the
environment (for example landmarks).

6.1 Homing on corners

The sensor used by the homing on corners behavior
is a range-finder based on a laser-line stripping vision
system [8, 22]. The behavior is stimulated when a cor-
ner is recognized in the scene (see Figure 1). The site
center Cc (c stands for corner) lies on the corner bi-
secting line at a distance that is inversely proportional
to the sensor depth error distribution. This parameter
is fixed in the behavior and is hence similar between
corner homing sites. Figure 5 shows a plot of data
measured for the projection Ω′

c of the capture zone on
the ground plane. The axes 0x and 0y represent the
two perpendicular side walls.

6.2 Homing on landmarks

The sensor used by the homing on landmarks be-
havior is a light-projecting vision system using an om-
nidirectional sensor (camera with fisheye lens with
about 2π steradian field of view) to distinguish re-
flective landmarks from the background [2, 8, 9] (see
Figure 7). Self-positioning can be performed on any
two distinct landmarks. The site center Cl (l stands
for landmark) lies on a line that passes half-way be-
tween the landmarks, perpendicular to the line sup-
porting them. The distance between the site center
and the landmarks, as well as the size of Ω′

l, is propor-
tional to the distance between the landmarks them-
selves. Hence, homing sites consisting of landmarks



Figure 5: Measures of the capture zone ground pro-
jection for the homing wall corners (Ω′

c) and homing
landmarks (Ω′

l) behaviors.

disposed too far away may be rejected in the valida-
tion process (according to the second criteria discussed
earlier).

Figure 5 shows a plot of measures of Ω′
l. The dis-

tance between the two site landmarks, as well as the
site location, have been chosen so that Ω′

l and Ω′
c are

approximately equivalent in surface and position. It
is interesting to observe that the capture zones of the
homing on landmarks and homing on corners have a
similar shape, although they use very different vision
sensors and site features.

6.3 Homing on ceiling structures

Since typical robot workplaces are in most cases
constrained to a flat surface, a particularly interesting
set up for a passive omnidirectional sensor is to place
it vertically so that the optical axis is perpendicular
to the ceiling. The simplicity of ceiling structures in
typical office-like environments is tempting since the
image processing complexity is greatly reduced. Fur-
thermore, the homing on ceiling structures behavior
can take advantage of interesting symmetric proper-
ties when servoing the robot.

6.4 Implementation

Until now, classic servoing controllers [17, 18] have
been evaluated for the implementation of the hom-
ing behaviors. However, a common problem is speed:
depending on the homing behavior and the site, the
robot needs 10 to 120 seconds to reach the site center
starting at the boundary of the capture zone. Better
servo algorithms may reduce the time necessary for
homing the robot without sacrifying the stability of

the behavior. We are currently evaluating promising
techniques based on fuzzy logic.

Figure 6: The robot is moving from site 1 to site 3
along simple odometric paths and uses self-positioning
to reset the odometric drift.

6.5 Experimental results

We ran as set of experimental tests that showed
great stability for the homing on corners and homing
on landmarks behaviors [2, 3]. The homing on ceil-
ing structures is currently being evaluated. Table 1
presents an abstract of robot position measurements
(orientation is not measured) during a test bench for
which the robot had to navigate between three fixed
homing sites (see Figure 6) using the homing on land-
marks behavior and the odometric sensors. The val-
ues reported in the columns represent the distance in
centimeters between the ideal site centers (estimated
from Ω′

1, Ω′
2 and Ω′

3) and manually measured robot
positions, for the first 24 loops. These observations
show no sign of incremental drift, as it would be the
case using only odometric sensors for navigation.

The homing on landmarks behavior has been also
supporting navigation for a structured task we devel-
oped for tidying up chairs in a room [2]. This task ran
successfully during demonstration sessions of about
one hour, showing good autonomy (see Figure 7). The
fact that the chairs end positions are stable and lo-
calized in space is to our point of view a novel fea-
ture over existing tasks that are usually limited to
stimulus/response-like actions not mapped in space.

7 Conclusion

We proposed and developed three new homing be-
haviors providing self-positioning capabilities to au-



Figure 7: Behaviors such as homing, going to a target
and detect obstacle are used cooperatively for tiding
up chairs in a room. A light-projecting vision system
is used for homing the robot on landmark pairs.

tonomous mobile robots: homing on wall corners,
homing on landmarks and homing on ceiling struc-
tures. Evaluations performed on a real robot and in-
volving the two first homing behaviors showed good
stability and autonomy during various test benches
we ran. They also provide comfortable modularity
and independency features for programming complex
tasks in real environments. The third homing behavior
shows great potential and is currently being evaluated.

The homing behaviors provide means for the robot
to learn the structure of unknown environments by
reducing their huge spatial state spaces to a small
amount of homing sites and paths. With them, navi-
gation is possible in terms that were conceptually re-
served so far to positioning-like approaches (using ge-
ometric an probabilistic methods).

In the future we will extend further the self-
positioning concept in a task that tidies up and moves
chairs in a real world consisting of offices and hallways.
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Mâıtre, ”Architecture of an experimental vision-
based robot navigation system,” proc. of Swissvi-
sion, Zurich, Switzerland, September 1993.

[5] C. Facchinetti, ”Motion Planning and Control
With Uncertainty While Sensing the Environ-
ment,” Proc. International Conference on Signal
Processing Applications and Technology ’93, Santa
Clara (USA), September 1993.

[6] C. Durieu, J. Opderbecke and G. Allegre, ”A
Data Fusion Application for Location of a Mobile
Robot Using Odometer and a Panoramic Laser
Telemeter,” Proc. of the Third Int. Conf. on In-
telligent Autonomous Systems, pp 519-529, Pitts-
burgh, February 1993.

[7] R. Basri and E. Rivlin, ”Homing Using Combina-
tions of Model Views,” Int. Joint Conference on
Artifical Intelligence, September 1993
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