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1 Introduction

The topic of this lecture is the automatic analysis of motion by machines. Our goal is

to present some of the techniques used to solve the problem of motion detection and

measurement.

1.1 Relevance of motion to image analysis

Consider the real world, and concentrate on what you can extract from it, using the visual

sense only: your perception is not just like a still picture of your environment; it is rather

the full time-evolution of the images you are receiving through your eyes. You would not

be able to play a tennis game if you only had access to just a single still picture frame of

the court, much like the court's oor plan is. On the other hand you need, in order to

play, some informations on the opponent's displacement, on the ball's speed and direction,

and on your own movements.

Note that you do not absolutely need an immediate perception of depth: you still are

able to play even with one eye closed, without bene�tting by any stereo e�ect. The reason

is that you reconstruct the structure and proximity of your surroundings using clues found

in the motion itself.

It follows that motion is a powerful characteristic to consider when analyzing visual

input; its relevance to pattern recognition and image processing is of big importance.
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1.2 Survey on motion application

The techniques developed for motion estimation have been applied to a wide range of

applications; Nagel (in [Huan 81a], pp. 19{228) presents a survey spreading on more than

200 pages. The interested reader is encouraged to have a fruitful look at it; there, he will

�nd full discussion and references pertaining to:

� coding. When transmitting data in a videophone application, it is interesting to

predict the next frame. To this end, the knowledge of the actual frame's motion is

a must;

� restoration. A blurred image can sometimes be deblurred if the causes are known.

Motion of the camera or of the subject is often one of the reasons;

� interpolation. Suppose you want to get an interpolated image between two frames

of a motion-picture. If there is any moving object in the image sequences, then

averaging the two frames will not work, unless you distort them on the basis of

motion information;

� target tracking. In this particular case, two motions have to be considered: not only

the target's, but also the hunter's motion;

� traÆc monitoring. The speed limitation regulation is one aspect; another one is the

automatic monitoring of traÆc jams;

� autonomous navigation. An autonomous mobile robot needs to select a path which

avoids obstacles. Those may be moving; but even if they are still, the robot has to

be fed with its own motion information;

� satellite sensors,

1. wind/clouds. An earth orbiting satellite is so far the best tool to monitor an

area as large as, say, an ocean. To detect and measure the wind velocity, simply

look at the clouds it carries;

2. snow coverage. Di�erent time-scales may be useful: recording the melting rate

of glaciers in spring may be interesting for hydrogeologic studies. Recording

the growth or recession rate of polar ice-�elds through the years may indicate

trends in global climate;

3. shoreline erosion. Is the erosion slow or fast? Is it wise to construct some

planned building near that particular coast?

4. forest growth. The monitoring of the deforestation yields some informations

for reasonable exploitation;

� biomedical,

1. behavior of microorganisms. The inuence of some temperature or concen-

tration gradient on the behavior of microorganisms can only be automatically

measured if one has access to their motion, which can be done by the observa-

tion of Petri dishes;
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2. transportation of chemicals within cells. It happens very often that the deter-

mination of the rate of transportation of chemicals within cells is crucial for the

timing of some biological mechanisms. A microscope is a good tool for such

studies;

3. spermatozoon activity. The spermatozoon's ability to show some characteris-

tic movement pattern is one of the standardized quality test used in arti�cial

insemination;

� human body medical image sequences,

1. heart beat. The physician would be very happy to give some quantitative bases

to his qualitative statements;

2. blood circulation. A non-invasive method for measuring the blood velocity can

be applied in conjunction with X-ray techniques, permitting to have a deep

insight into the body while looking at some blood made opaque to X-rays by a

marker.

1.3 Lecture outline

After a short introduction, we will de�ne the concept of the optical ow �eld, and show

some ways to compute it. First we will consider two domains of transformation (Fourier

and Hadamard), and show how to pass from these domains to motion estimation. Then

we will present a method based on intensity gradients, which allows the computation of

a dense optical ow �eld. Unfortunately, this optical ow �eld is not fully speci�ed and

needs some assumptions for its full recovery; some possible assumptions are discussed.

The next method is based on token correspondences between two images, and produces

a sparse optical ow �eld. The determination of this ow �eld is complete, but the

problems encountered in establishing the correspondences are similar to the problems

found in stereo vision; some heuristics for their solution are discussed from the motion

analysis point of view. A short analogy between computer motion estimation and human

vision will conclude the lecture.

2 Optical ow �eld de�nition

The motion analysis proceeds usually in two steps. The �rst step may be considered as a

generalized image processing: its purpose is to transform the raw input image sequences

into a two-dimensional intermediate representation of motion, still strongly related to the

retinal surface. The second step is usually considered as image interpretation, or motion

understanding: its purpose is to credit each object of the acquired scene on a motion/depth

information.

The purpose of this section is to de�ne more precisely the intermediate representation

to be extracted from the �rst step. This representation is called the optical ow �eld.
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2.1 De�nition

Consider a spot of light created by the rotating beacon of a lighthouse. Put a big screen

very far from the lighthouse, at a distance so great that the spot projected onto the screen

is advancing at a speed higher than the speed of light. For example, a ashing rate of

one rotation pro second would result in a screen having to lie at more than �fty thousand

kilometers.

Now, ask somebody to look on the screen: from the premise of bounded physical speed,

he will be able to tell that what he sees is not a real object, but just some moving pattern

of intensities. He will conclude that he is looking to an optical ow �eld , as opposed to a

motion ow �eld .

Optical ow �eld: Instantaneous description of the magnitude and direction of

the retinal velocities of intensity patterns.

Motion ow �eld: Instantaneous description of the magnitude and direction of

the true projected velocities of real world objects.

These de�nitions are purposely left imprecise enough in order to allow them to support

every kind of imaging system: at retina vs. spherical retina, single camera vs. multi

cameras, short and long image sequences, etc.

2.2 Discussion

It is important to outline that the di�erence between the optical and the motion ow �eld

may not always be as obvious as in the rather arti�cial example from above. There are

other cases where the acquired intensity patterns move in a di�erent way than the physical

surfaces supporting it; consider for example a driving-mirror, or the ground of a lake seen

through clear water. Sometimes, the human brain is even disturbed by illusions, like the

well-known barber's pole e�ect.

In each of the above cases, it would be vain to attempt the recovering of the true

motion of objects on the basis of intensities alone. Some world model is required, in order

e.g. to �rst recognize a magnifying glass, and then to decide how to treat the visual data

which happens to have gone through it.

2.3 Optical and motion ow �eld equivalence

From now on, we will ignore the di�erence between motion and optical ow �eld. We will

assume that they are identical in all aspects. For example, we will consider the optical ow

�eld as adequate when we will attempt to reconstruct a three-dimensional scene based on

motion alone, as like as the one-eyed tennis player does.
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3 Optical ow �eld in transformation domains

The motion computation techniques we present in this section are interesting more from

a theoretical point of view than from a practical point of view; they belong to a class of

techniques rarely used in image processing. They �rst represent the image in a domain of

transformation; the frequency domain, related to Fourier analysis, is one of those. Then,

they extract the useful information directly from this transformation domain.

These techniques use restrictive assumptions, discussed later, and hence have low per-

formances in a real environment. Nevertheless, their interest lies in the use of very classical

signal processing tools, and they can be introduced without any special knowledge of image

processing.

3.1 Image de�nition

De�ne, in the domain of real numbers, a dynamic image (time-varying intensity patterns)

by

Ic = Ic(x; y; t) (1)

where x and y stand for the coordinates in a two-dimensional image plane, and t denotes

the time. For the case where the acquisition apparatus consists of several imaging devices,

the c index is used to indicate from which camera the image is issued.

3.2 Hypothesis

We will give here some conditions required for computing an optical ow �eld in both the

Fourier and the Hadamard domain. These conditions pertain as well to the manner in

which the image sequences are acquired, as to the scene itself.

� We will use only two frames, shot at t0 and t1.

� We are using a single camera, so the subscript c will be subsequently dropped and

replaced by the time subscripts; the corresponding frames become I0 and I1 respec-

tively.

� The camera does not translate, rotate or zoom. Its focus and its diaphragm are both

�xed.

� There is a single object moving before a stationary background. This object stays

at any time within the image frame and is never subject to occlusions.

� The object's movement is translational only: no rotation, no change of size, no

change of form is allowed.

Further, we assume that the background is black everywhere (that is, put to zero-

level). This can be done by illuminating the moving object only, or by using a technique
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of segmentation in order to de�ne the two areas corresponding to the background on the

one hand, and to the object on the other hand. Then, setting the background to zero-level

becomes easy.

These restrictions impose that

I1 = I(x; y; t1) = I(x��x; y ��y; t0) (2)

where �x and �y stand for the displacement of the object along the x-axis and the y-axis

respectively, achieved in the time interval �t = t1 � t0. Therefore, the computed velocity

corresponds to

v =

 
vx
vy

!
=

 
�x=�t

�y=�t

!
(3)

3.3 Fourier domain

The basic idea [Huan 81a] is to compute a two-dimensional Fourier transformation for

each of the I0 and I1 images, and then to compare them on the basis of their phase plane.

As the second image is simply the shifted version of the �rst one, the phase di�erence

should be linear with respect to the spatial frequency.

De�ne the two-dimensional Fourier transformation J of an Image I by

J(�; !; t) = jJ j exp(i 6 (J)) = Fx;y fI(x; y; t)g (4)

where � and ! are spatial pulsations on the x- and y-axis respectively, and where jJ j and
6 (J) denote the magnitude and phase of the Fourier transformation respectively, with

i =
p
�1. By the shift theorem of the Fourier analysis, we can write

J(�; !; t1) = J(�; !; t0) exp(�2�i (��x+ !�y)) (5)

hence,

�6 (J) = 6 (J(�; !; t1))� 6 (J(�; !; t0)) = �2� (��x+ !�y) (6)

It is obvious that the algorithm for computing the displacement of our single moving

object over a black background is �rst to get I0 and I1, then J0 and J1. The computation

of �6 (J) for two arbitrarily chosen sets of pulsations � and ! yields two linear equations

in the two unknown variables �x and �y, which can easily be solved.

Of course, it is also possible to select every conceivable pairing of � and ! in order to

overdetermine the unknown shifts. This procedure allows the use of e.g. a least squares

method for the solution of the system of equation. The additional computational cost is

rewarded by increased robustness.

3.4 Separability of Fourier analysis

In the section 3.3, we have seen that we could determine the motion parameters from

a pair of Fourier transformations; but the algorithmic complexity was heavy, due to the
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fact that they had to be computed in a two-dimensional plane. In the present section, we

propose a scheme using instead a unidimensional Fourier transform. The idea is to project

and accumulate the intensity pattern along each axis. Using the same hypothesis as in

section 3.2, the projected image should obey the same rules concerning its displacements

as the original image.

Consider the projection I�y along the y-axis of the image I onto the x-axis

I�y(x; t) =

Z
ymax

ymin

I(x; y; t) dy (7)

De�ne its one-dimensional Fourier transformation J�y by

J�y(�; t) = Fx

�Z
ymax

ymin

I(x; y; t) dy

�
(8)

The relation 2 translates into

J�y(�; t1) = Fx

�Z
ymax

ymin

I(x��x; y ��y; t0) dy

�

=

Z
ymax��y

ymin��y

Fx fI(x��x; y; t0)g dy

=

Z
ymax��y

ymin��y

exp(�2�i ��x)Fx fI(x; y; t0)g dy

= exp(�2�i ��x)J�y(�; t0) (9)

where the fact that the moving object stays within the image frame has been used to

replace ymax ��y and ymin��y by respectively ymax and ymin in the integral's bounds.

It follows from equation 9 that

� 6 (J�y) = 6 (J�y(�; t1))� 6 (J�y(�; t0)) = �2� ��x (10)

For the second dimension, we get similarly

� 6 (J�x) = 6 (J�x(!; t1))� 6 (J�x(!; t0)) = �2� !�y (11)

The shifts �x, respectively �y, can now be computed using a single pulsation �, re-

spectively !. If one may want to achieve a higher robustness by including more pulsations

in the computation, then the least squares method of section 3.3 can be substituted by a

simpler averaging technique. Moreover, the burden of a two-dimensional Fourier transfor-

mation computation has been replaced by its one-dimensional counterpart.

3.5 Conclusion on Fourier analysis

We have de�ned an analytical, continuous method for extracting the motion of an object

which had been subject to the restrictions of section 3.2. Unfortunately, this method is
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computationaly expensive (Fourier transform), and complicated by the fact that conven-

tional techniques for computing a (discrete) Fourier transformation yield phase compo-

nents values wrapped in the main domain only [0; 2�[. The solution is either to unwrap

the phase component, or to impose a new condition limiting the displacement magnitude

to less than half an image frame.

The assumptions needed ar thus very restrictive; on the other hand, the method is

quite robust to noise, as each part of the image participates to this motion extraction

algorithm. Further, after discretization (if there is any), the displacement quantization

is better than the image resolution, as it is not a result of geometric computations with

localized pixels, but a more global approach.

3.6 Hadamard domain

The idea [Lai 88] is that by using modern, digital computers, one is forced to forget about

a continuous world and rather concentrate on its discrete version. Now, it appears that

some transformation domains are more suited to analog computations, and some others to

quantized processing. The Hadamard transform is one of the latter; indeed, it is de�ned

in an world where numbers are coded using binary representation of integers only. Its

peculiarity is that its associated transformation may be computed using merely additions

and subtractions.

We will �rst give a de�nition of the Hadamard transform, and then see how it can

be used to get motion from a set of two frames obeying to the same restrictions as in

section 3.2.

3.7 Hadamard transformation

Let I(i; j; k) 2 [Imin; Imax] be an image subject to intensity quantization, spatial quantiza-

tion i 2 [imin; imax], j 2 [jmin; jmax], and temporal quantization as well k 2 [kmin; kmax].

Letting k0 = 0 and k1 = 1, the shift equation 2 reads now

I1 = I(i; j; 1) = I(i��x; j ��y; 0) (12)

The three-dimensional Hadamard transformation of this image is de�ned by

H(�; �; �) =Hi;j;k fI(i; j; k)g =
imaxX
i=imin

jmaxX
j=jmin

kmaxX
k=kmin

I(i; j; k) (�1)p(i;j;k;�;�;�) (13)

where the parity function p is de�ned by

p(i; j; k; �; �; �) =

log2(imax�imin)X
c=0

�cic +

log2(jmax�jmin)X
l=0

�ljl +

log2(kmax�kmin)X
t=0

�tit (14)

In equation 14, log2(�) denotes the base-2 logarithmic function, the selected upper-

bound of summation being equal to the next or equal integer number. The notation
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ai 2 f0; 1g stands here for the i-th bit of a, the least and most signi�cant bit being

respectively a0 = LSB and aN�1 = MSB in natural binary coding.

3.8 Hadamard transformation applied to a single moving pixel

For demonstration purposes, we add now an assumption still more restrictive than the

previous ones: the imaged object is reduced to a single non-zero moving pixel. Suppose

that its grey-value is g, and that it shows up at location (i0; j0) in the �rst frame, and

(i00; j00) in the second frame. The corresponding time-varying image can be described by

I(i; j; k) =

(
g (i; j; k) = (i0; j0; 0) _ (i; j; k) = (i00; j00; 1)

0 (i; j; k) 6= (i0; j0; 0) ^ (i; j; k) 6= (i00; j00; 1)
(15)

In binary notation, the displacement along the x-axis is

�i = i00 � i0 =

NX
c=0

2c(i00c � i0c) (16)

where N is a bound big enough to hold every conceivable case

N = log2(imax � imin) (17)

One gets from equations 13 and 15 two particular cases, with the de�nition of p�(i; �)

being evident from equation 14

H(0; 0; 0) = I(i0; j0; 0) (�1)p(i0;j0;0;0;0;0) + I(i00; j00; 1) (�1)p(i00;j00;1;0;0;0)

= 2g (18)

H(�; 0; 1) = I(i0; j0; 0) (�1)p(i0;j0;0;�;0;1) + I(i00; j00; 1) (�1)p(i00;j00;1;�;0;1)

= g(�1)p�(i0;�) + g(�1)p�(i00;�)+1 (19)

Constraining � to the powers of two leaves only one non-zero term in equation 14,

yielding

H(2n; 0; 1) = g
�
(�1)i0n � (�1)i00n

�
= 2g (i00n � i0n) (20)

where the last equation is obtained by looking at the exhaustive list of values for i00n and

i0n. We derive from equation 18 and equation 20 the relation linking a given bit �in of

the displacement �i to the Hadamard transformations. Combining these results over the

whole binary representation of the shift along the i-axis, we get

i00n � i0n =
H(2n; 0; 1)

H(0; 0; 0)
(21)

�i =

NX
n=0

2n
H(2n; 0; 1)

H(0; 0; 0)
(22)

Of course, a similar equation can be established for the j-axis. Note that N + 2

Hadamard transformations must be computed for both axis, each requiring only additions

and subtractions. That is a nice result, but it would be silly to use this sophisticated

method to get the displacement of just one single point. . .
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3.9 Hadamard transformation applied to the whole moving pattern

Suppose now that we want to apply the method developed in section 3.8 to a pattern

whose size is bigger than just one single pixel. Each pixel of this moving pattern may be

indexed by p, and there are P of them, ranging from 0 inclusive to P exclusive. If we

term Hp the Hadamard transformation applied to the single pixel of index p, then both

the property of linearity of the transformation and the conjoint use of equation 22 imply

NX
n=0

2n
H(2n; 0; 1)

H(0; 0; 0)
=

NX
n=0

2n
P

P�1
p=0 Hp(2

n; 0; 1)P
P�1
p=0 Hp(0; 0; 0)

=

P
N

n=0

P
P�1
p=0 2nHp(2

n; 0; 1)P
P�1
p=0 Hp(0; 0; 0)

=

P
P�1
p=0 �iHp(0; 0; 0)P
P�1
p=0 Hp(0; 0; 0)

= �i (23)

NX
n=0

2n
H(0; 2n; 1)

H(0; 0; 0)
= �j (24)

3.10 Conclusion on Hadamard analysis

We have de�ned a method for extracting the motion of an object subject to the restrictions

of section 3.2. This method is applicable to discrete data only, and is computationaly less

expensive than the Fourier transformation, since it needs only additions and subtractions.

Further, it is well adapted to the digital binary world which is actually predominant in

computer architectures.

The components of motion can be retrieved separately, using a small number of values

(of order O(logn) in image dimension) from the transformed domain, but the assumptions

needed ar still very restrictive. On the other hand, the method is quite robust to noise,

as each part of the image participates to this motion extraction algorithm. Note that

the resolution in displacement is better than the image resolution, as it is not a result of

geometric computations, but a more global approach.

3.11 Conclusion on motion computations in transformation domains

The most striking point is the restrictiveness of the hypothesis made in the section 3.2.

Remember that we are looking at the translation, and translation only , of a single moving

object. Still more important is the condition of a background which is set to zero-level.

In fact, as soon as this condition is ful�lled, one may apply the much simpler technique of

gravity-center approach, presented below.

Consider the intensity of any image I as being a weight, and compute the gravity-center
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of the �rst and the second image

g(t0) =

P
x2I x I(x; t0)P
x2I I(x; t0)

(25)

g(t1) =

P
x2I x I(x; t1)P
x2I I(x; t1)

(26)

The linear displacement of the (single) pattern is then simply equal to the displacement

of the center of gravity  
�x

�y

!
= g(t1)� g(t0) (27)

The velocity \�eld" obtained by all the above methods is very crude, as it consists of

two values only: by hypothesis, the background is motionless, while a unique translational

displacement value is assigned to the whole moving pattern; but in some way, this velocity

�eld may be seen as dense, for it is de�ned everywhere. The content in information of this

velocity �eld has to be considered as a whole, including the �gure/ground segmentation.

From such a point of view, much of the work is carried out by the segmentation process,

the easier part being left to the motion analysis. This is one extreme of task division.

Another extreme will be presented in the next section.

4 Optical ow �eld in gradient schemes

Let us do some introspective observations while investigating our own motion detection

and measurement capabilities: it shows up very quickly that we are indeed able to detect

motion in a rather unawareness manner. In particular, we do not necessarily have to

identify any object before being able to tell that \something" is moving. I hope that still

everybody has had the opportunity to experience the sudden discovery of some animal

(bird? squirrel? rabbit? leaf?) while wandering in a forest, noticed by its mere movement

and nothing else. Alternatively, consider the task of �nding a y on a randomly dotted

wallpaper; an immobile y or a moving y makes a great di�erence. These experiences

draw the attention to the fact that one is able to detect motion at a level of perception

which seems not to require much information about the world's structure or meaning. A

model of local computation of motion would perfectly cope with this.

While reproducing this behavior by machines, we are faced to a problem which is totally

di�erent from that of section 3, owing to the fact that we have no a priori knowledge of

what is moving. To begin with, no �gure/ground segmentation may be applied; on the

contrary, we have to rely on the image intensities only in order to discover the motion

parameters of maybe several patterns at the same time. It is only after the completion of

motion analysis that we may be able to segment the scene into moving and non-moving

parts.

Indeed, a scheme for the local measurement of motion using intensities does exist

[Limb 75]. It is generally termed a gradient scheme, and is apt to yield a dense ow �eld.

However, the full determination of motion, using this scheme, is reached only if some a
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priori assumptions are made. Further, some parts of the ow �eld may be left unde�ned.

The scope of the present section is to show with some details the use of a gradient scheme

in determining of the optical ow �eld; the assumptions needed for its full recovery will

be discussed, too.

4.1 Aperture problem

Consider the task of determining motion on the basis of intensity patterns only: it may

sometimes happen that this task does not make any sense at all. For example, the detection

of a sheet of white paper sliding on top of another sheet of white paper can be considered as

an intractable case. What one needs indeed, to perform the task, is the very existence of a

pattern, that is, a non-uniform image. When ful�lled, this requirement gives automatically

rise to some intensity gradient.

Consider now the task of the local determination of motion within some small window

in the image; for simplicity purposes, assume that the existing gradient is replaced by a

step function, oriented along e.g. a vertical direction. Then, it is clear that if this edge also

slides along the vertical direction, and if one restricts the information to what is happening

under the window only, then there will be no clues available to indicate any movement.

The only movement which can be recovered through this small aperture is a movement

which is perpendicular to the edge, or, equivalently, parallel to the gradient.

In the case just described, an in�nity of di�erent optical ow �elds could �t the data

obtained through our �nite aperture window, for the motion in a direction parallel to the

edge is lost and may take any value.

This problem is inherent to any local scheme for computing motion. It is termed the

aperture problem, and manifests itself in a number of other cases. Basically, it states that

it is impossible to fully recover motion using local informations only. This implies that

determining the optical ow �eld on the basis of an intensity gradient scheme is formally

an ill-posed problem. It means that this problem either

� has no solution at all,

� has no unique solution, or

� does not depend continuously on the initial data.

In the next sections, we will see �rst how to get the recoverable part of motion, and

then how to regularize this ill-posed problem.

4.2 Optical ow derivation

Take the generalized image of equation 1, and forget about the c index, as we are making

use of a single camera only. If we accept this image as being analytical, we then may
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expand it into a Taylor series and get

I(x+ dx; y + dy; t+ dt) = I(x; y; t) +
@I

@x
dx+

@I

@y
dy +

@I

@t
dt+ �(x; y; t) (28)

where �(x; y; t) denotes all the terms of order higher than 1, which will be ignored from

now on.

If the image pattern at the coordinates (x; y; t) is undergoing an instantaneous trans-

lation (dx; dy) in an in�nitesimal time (dt), and if we suppose that the pattern is time-

invariant, then we are able to track I(x; y; t) through time and space (neglecting at this

time-scale any global variation of illumination is equivalent to considering motion only as

responsible for the term @I=@t). The tracking is correct if

I(x+ dx; y + dy; t+ dt) = I(x; y; t) (29)

which implies, by equation 28,

0 =
@I

@x
dx+

@I

@y
dy +

@I

@t
dt , �@I

@t
=

@I

@x

dx

dt
+
@I

@y

dy

dt
(30)

Writing the velocities vx = dx=dt and vy = dy=dt yields

�@I

@t
=

@I

@x
vx +

@I

@y
vy (31)

or, in an equivalent vector notation

�@I

@t
= (rrrI)T � v (32)

where rrrI stands for the spatial gradient of the image, T is the symbol used for transpo-

sition, � denotes the vector-product and v is the vector-valued velocity.

We have seen that only the component of velocity which lies perpendicular to the edge

(i.e. parallel to the gradient) can be measured. Its magnitude is

v?(x; y; t) =
j@I=@tj
rrrI =

j@I=@tjr�
@I

@x

�2
+
�
@I

@y

�2 (33)

The magnitude v> of the velocity component lying tangentially to the edge (i.e. per-

pendicular to the gradient) cannot be recovered directly from the image sequences. Some

more constraints are required.

4.3 Robustness with respect to intensity distortion

The cameras used to record the image sequences are usually subject to transfer charac-

teristics which are not linear between the illumination and the camera's signal output

13



[Batc 85]. In order to do computations using correct intensity values, it is necessary either

to �nd a way to eliminate the non-linearities or to cope with them in such a manner that

they cancel one another.

For our case, consider the function f(I) transforming the distorted intensity I, coming

from the camera, into the correct, true illumination value. If we rewrite equation 33 using

this transformation, we get

v?(x; y; t) =
j@f(I)=@tjr�

@f(I)
@x

�2
+
�
@f(I)
@y

�2 =

���@f
@I

@I

@t

���r�
@f

@I

@I

@x

�2
+
�
@f

@I

@I

@y

�2
=

j@I=@tjr�
@I

@x

�2
+
�
@I

@y

�2 (34)

We just have shown that the burden of calibration needed to estimate f(I) is useless.

The raw incoming intensity I is suÆcient to meet our computational requirements, because

any continue and monotonous transformation f yields the same result, provided that

@f=@I exists at the same time that it is non-zero.

4.4 Conclusion on ow �eld computation using gradient

We have introduced a technique for the local computation of an optical ow �eld. This

technique makes use of the local temporal and spatial gradient of an image; there is no

need for any knowledge about the world. The only assumption about the image sequences

is that they have to be analytical. The velocity obtained is independent from intensity

transformations constant in time; one may then choose any hardware camera without

taking care about intensity calibration. These were the good news.

The bad news are that the computations are done using derivatives, which are notorious

for their numerical unreliability; this may induce some noise problems. More important,

only half of the ow �eld has been retrieved, because the aperture problem limits the

recovery to the perpendicular component of motion. The v> component is still missing.

5 Motion constraint

Equation 32, derived in section 4.2, is not suÆcient to specify entirely the content of the

optical ow, if one considers only the data; but still it can be used in certain restrictive

cases. First, we will discuss some useful representations of the constraints generated by

this equation. Then, we will make some assumptions assisting in the full recovery of optical

ow for some special cases.
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5.1 Point locus in the velocity space

Consider rewriting equation 32 in a form making use of unit vectors in the direction

perpendicular and parallel respectively to the gradient

v = v> u> + v? u? (35)

where u> and u? are de�ned as

u? =
rrrI
jrrrIj (36)

ju>j = 1 ^ (u>)T � u? = 0 (37)

We can get u> and u? from the image sequences, and compute v? as indicated in

equation 33. On the other hand, v> is left unspeci�ed; but one can clearly see, from

the above equations, that if we build a velocity space where vx and vy are drawn, then

equation 35 can be plotted as a line. Actually, this equation states that if v> = 0, then

the velocity lies at the tip of the v? � u? vector; if v> 6= 0, then the velocity vector may

be anywhere away from this tip, as long as it lies on a line whose direction is given by u?

and which passes through the tip.

5.2 Translating polygon

Remember the �rst part of the discussion in section 4.1, and also equation 33: the spatial

gradient has to be non-zero. Suppose now that this condition is ful�lled only at the borders

of a polygon built with straight line segments. Along any given segment, the constraint

lines in the velocity space will all be parallel, as the aperture problem forces the locally

detected motion to be perpendicular to the segment. Moreover, under the hypothesis of a

translational motion only, all the constraint lines for a given segment are merged.

If one considers now a second segment of the polygon, chosen to be non-parallel to the

�rst one, and subject to the same translation, then its corresponding constraint line in

the velocity space will intersect with the constraint line originating from the �rst segment,

and de�ne a single possible motion for the whole polygon. Of course, this technique can

be made more robust by considering all segment pairs, and by using clustering techniques

for the intersections in the velocity space in order to decide both how many polygons are

moving in the image, and what is their motion.

In conclusion, we pretend that the assumption of translational patterns only is suÆcient

to fully determine the optical ow, as computed in a gradient scheme using equation 32.

However, it is not the only possible way to regularize the problem; the next sections will

demonstrate some other techniques allowing to achieve the same goal.

5.3 In�nite inertia assumption

The idea [Wu 88] developed in this section stems from the observation that the objects

of the real world all have a �nite, non-zero mass. The fact that no in�nite acceleration
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is allowed in the classical physical world implies that, for any object, the di�erence in

velocity between time t0 and time t1 is small under the condition that the time interval

�t = t1�t0 is kept small enough. Hence, we will accept as a supplementary constraint that

the time-derivative of an optical ow is zero everywhere. This implies, using equation 31

(
0 = dvx

dt
= @vx

@t
+ @vx

@x

@x

@t
+ @vx

@y

@y

@t

0 =
dvy

dt
=

@vy

@t
+

@vy

@x

@x

@t
+

@vy

@y

@y

@t

(38)

Recognizing that vx = @x=@t and vy = @y=@t, one may transform the system of

equations 38 into (
@vx

@t
= �@vx

@x
vx � @vx

@y
vy

@vy

@t
= �@vy

@x
vx � @vy

@y
vy

(39)

Di�erentiating equation 31 with respect to x, y and t, and assuming that the image I

is not only twice di�erentiable, but also that the order of di�erentiation is not relevant,

one gets 8>><
>>:

�@2I
@x @t

= @
2
I

@x2
vx +

@I

@x

@vx

@x
+ @

2
I

@x @y
vy +

@I

@y

@vy

@x

�@2I
@y @t

= @
2
I

@x @y
vx +

@I

@x

@vx

@y
+ @

2
I

@y2
vy +

@I

@y

@vy

@y

�@2I
@t2

= @
2
I

@x @t
vx +

@I

@x

@vx

@t
+ @

2
I

@y @t
vy +

@I

@y

@vy

@t

(40)

If the relation @I=@y = 0 holds true, then the next equations have to be modi�ed in

a way which is rather obvious. Suppose from now on that the intensity gradient along

the y-axis is non-zero. One may then replace some terms of the system 40 by those of

system 39, getting8>>><
>>>:

@vy

@x
= �1

@I=@y

�
@
2
I

@x @t
+ @

2
I

@x2
vx +

@
2
I

@x @y
vy +

@I

@x

@vx

@x

�
@vy

@y
= �1

@I=@y

�
@
2
I

@y @t
+ @

2
I

@x @y
vx +

@
2
I

@y2
vy +

@I

@x

@vx

@y

�
�@2I
@t2

= @
2
I

@x @t
vx +

@I

@x

�
�@vx

@x
vx � @vx

@y
vy

�
+ @

2
I

@y @t
vy +

@I

@y

�
�@vy

@x
vx � @vy

@y
vy

� (41)

Merging the system 41 into one single equation, one gets

�@2I
@t2

= vx

�
@
2
I

@x @t
� @I

@x

@vx

@x
� @I

@y

�1
@I=@y

�
@
2
I

@x @t
+ @

2
I

@x2
vx +

@
2
I

@x @y
vy +

@I

@x

@vx

@x

��
+

vy

�
@
2
I

@y @t
� @I

@x

@vx

@y
� @I

@y

�1
@I=@y

�
@
2
I

@y @t
+ @

2
I

@x @y
vx +

@
2
I

@y2
vy +

@I

@x

@vx

@y

��
= vx

�
2 @

2
I

@x @t
+ @

2
I

@x2
vx +

@
2
I

@x @y
vy

�
+ vy

�
2 @

2
I

@y @t
+ @

2
I

@x @y
vx +

@
2
I

@y2
vy

�
= v2x

@
2
I

@x2
+ 2vxvy

@
2
I

@x @y
+ v2y

@
2
I

@y2
+ 2vx

@
2
I

@x @t
+ 2vy

@
2
I

@y @t

(42)

Rewriting vy from equation 31 yields

vy = �
@I

@t
+ @I

@x
vx

@I=@y
(43)

Substituting equation 43 into equation 42 gives rise to a second-order equation in vx,
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where all the terms can be found in the image. Explicitly, we write

0 = v2x

�
@
2
I

@x2
+ @

2
I

@y2

�
@I=@x

@I=@y

�2
� 2 @

2
I

@x @y

�
@I=@x

@I=@y

��
+

2vx

�
@
2
I

@x @t
� @

2
I

@y @t

�
@I=@x

@I=@y

�
� @

2
I

@y2

�
@I=@x

@I=@y

�
@I

@t
� @

2
I

@x @y

�
@I=@t

@I=@y

��
+�

@
2
I

@t2
+ @

2
I

@y2

�
@I=@t

@I=@y

�2
� 2 @

2
I

@y @t

�
@I=@t

@I=@y

�� (44)

Solving this equation and making use of equation 43 yields a pair of possible answers for

vx and vy. In fact, it is easy to select the right choice while considering the minimization

of the following discrimination function s

s(x; y; t; vx; vy) = jI(x� vx�t; y � vy �t; t��t)� I(x; y; t)j+
jI(x; y; t)� I(x+ vx�t; y + vy�t; t+�t)j (45)

where it has been implicitly assumed that the three images I�1, I0 and I1 have been taken

at a regular time interval �t in order to estimate the second order derivatives by numerical

approximation.

In conclusion, we pretend that the assumption of massive objects is also suÆcient to

fully determine the optical ow, as computed in a gradient scheme using equation 32;

however, it is not the only possible way to regularize the problem. We will demonstrate

in the next section another technique which allows to achieve the same result.

5.4 Smoothness assumption

This section will describe the most often used assumption for regularizing the computation

of optical ow in a gradient scheme. It is based [Horn 81] on a qualitative property of

imaging geometry: if you project (an orthographic projection is as good as a perspective

projection) a smooth, three-dimensional motion �eld onto a two-dimensional retinal image

(planar or spherical retinal surface), then the projected motion �eld tends also to be

smooth if one ignores any occlusion which may appear. Now, apart from object boundaries,

the true velocity �eld of a real scene does generally �t with a smoothness hypothesis. This

justi�es the regularization of our problem by imposing a smoothness constraint. The

constraint should be such that

� the solution obtained is uniquely de�ned (if one applies this constraint, a single ow

�eld should emerge from the computations),

� the solution obtained is physically plausible (no in�nite or inde�nite results should

occur; moreover, correct results are needed for at least some well chosen simple

cases), and

� the solution obtained is consistent with human perception (if it is true, then it is a

clue that the smoothness assumption is not a mere computational artifact).
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There are many possible smoothness constraints; for example, consider minimizing the

integral of the �rst order variations
R
jrrrvj ds, or minimizing the integral of the second

order variations
R
r2v ds, or minimizing only the change of motion direction

R
jrrr(6 v)j ds,

or only the change of motion magnitude
R
jrrrjvj j ds. Consider also the joint use of several

of these constraints at the same time; you will end up with a lot (an in�nity, indeed) of

possible ways to look for. Here, we will restrict our choice to the minimization of the

integral of the squared �rst order variations

� =

Z
s2I

jrrrvj2 ds =
Z
s2I

 �
@vx

@x

�2
+

�
@vx

@y

�2
+

�
@vy

@x

�2
+

�
@vy

@y

�2!
ds (46)

Of course, the quantity � has to be minimized. It can be shown [Rudi 73] that the

requirement of solution unicity is satis�ed, but the proof for this statement will not be

further investigated. Here, we will contend ourselves to give two examples, demonstrating

the physical plausibility of the chosen smoothness constraint applied to the regularization

of the optical ow �eld computation.

5.5 Smoothness assumption applied to a translating surface

The hypothesis, valid for this section only, states that the imaging system consists of a

unique pin-hole camera looking at an object whose motion is restricted to a translation in

a plane parallel to the camera's projection plane. The object is allowed neither to rotate

nor to deform. We prove here that, under these hypothesis, the motion computed using

the functional � of equation 46 is the correct one.

First, we will give some properties of the geometry involved; then we present the proof

in two steps. The �rst step states that every translating object produces the minimal value

� = 0. The second step states that if one has to build a ow �eld under the constraint

� = 0, then one will always end up with a translation. The conclusion is that minimizing

� is the bets thing to do when confronted to a mere translation, because �nding the

absolute minimum is equivalent to �nding the translation.

Geometrical considerations: with no loss of generality, describe any movement in space

by the combination of an axis of rotation going through the origin, and a translation. The

rotation 
 as well as the translation T may be represented each by a vector


 = (
x;
y;
z)
T (47)

T = (Tx; Ty; Tz)
T (48)

The velocity of a point in space may then be described by

V = 
�X+T =

0
B@ 
x


y


z

1
CA�

0
B@ X

Y

Z

1
CA+

0
B@ Tx

Ty
Tz

1
CA =

0
B@ Z
y � Y 
z + Tx

X
z � Z
x+ Ty
Y
x �X
y + Tz

1
CA (49)

where X = (X;Y;Z)T is the coordinate of the considered point, and V = (Vx; Vy; Vz)
T is

its instantaneous velocity. Using a pin-hole camera whose eye is placed at the origin, and
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whose projection plane is set at the focal length f = 1, one may then determine the true

motion ow �eld w (see section 2.1). Writing the projection coordinates in lower-case and

the world coordinates in upper-case, one gets

x(t) =
X + tVx

Z + tVz
(50)

_x(t) =
Vx(Z + tVz)� Vz(X + tVx)

(Z + tVz)2
=

ZVx �XVz

(Z + tVz)2
(51)

wx = _x(0) =
Z2
y � Y Z
z + ZTx �XY 
x +X2
y �XTz

Z2

= �
xxy + 
y(1 + x2)� 
zy +
Tx � Tzx

Z
(52)

wy = _y(0) = 
yxy � 
x(1 + y2) + 
zx+
Ty � Tzy

Z
(53)

In the above equations, t is the time, and the notation _x stands for the derivative of

the variable x with respect to the time.

Finally, we now are able to formalize our hypothesis, which states that there should

be no rotation (
x = 
y = 
z = 0), and that the remaining translation is con�ned to a

plane parallel to the image (Tz = 0). We may then rewrite equations 52 and 53 for the

special case treated in this section, where Z = Z0 is considered as �xed, yielding the true

motion ow �eld

w =

 
Tx=Z0

Ty=Z0

!
(54)

One clearly can see in equation 54 that the magnitude of the motion �eld gradient

jrrrwj is zero everywhere; it follows immediately that
R
jrrrwj2 ds = 0. Since this value is

the lowest possible bound for �, then we conclude that any translational intensity pattern

does minimize �. The �rst step of the proof is done.

Conversely, consider the relation 46 and develop each term of the integrand according

to equations 52 and 53; we get

@vx=@x = �
xy + 2
yx�
Tz

Z
(55)

@vx=@y = �
xx� 
z (56)

@vy=@x = 
yx+ 2
xy �
Tz

Z
(57)

@vy=@y = 
yy + 
z (58)

If � is to reach its absolute minimum, then each term of equations 55 through 58 has

to be zero. Taking this into account, the addition of equations 56 and 58 yields


yy = 
xx (59)
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The multiplication of the relations 55 and 57 by y preserves their zero-value, and allows

one to equate them

�
xy
2 + 2
yxy � y

Tz

Z
= 
yxy � 2
xy

2 � y
Tz

Z
(60)

Cancelling the identical terms in the above equation, and replacing the (
yy) terms

using equation 59, one gets

�
xy
2 + 2
xx

2 = 
xx
2 � 2
xy

2 (61)


x(y
2 + x2) = 0 (62)

This last equation can be satis�ed everywhere only if 
x = 0. This implication,

together with equation 59, constrains 
y to be zero as well; using equation 56, it also

constrains 
z to be zero. These considerations can be summed up in the statement that

no rotation can ever be produced by constructing a motion ow �eld under the constraint

� = 0. Furthermore, the introduction of this constraint into equation 55 shows that any

translation along the optical axis is forbidden, as it implies that Tz = 0.

In conclusion, we have �rst shown that a mere translational motion ow �eld generates

the absolute minimal value for the functional �; then we have shown that constructing a

ow �eld under the hypothesis � = 0 yields a translational ow �eld again. This conveys

itself in an equivalence relation, implying that trying to minimize � is the best thing to

do when faced to a mere translational motion �eld such that there is no movement along

the optical axis.

5.6 Smoothness assumption applied to a rigid polyhedron

The new hypothesis, valid for this section only, states that the imaging system consists

of a single orthographic camera looking at some moving object. This object is a rigid

polyhedron, subject to the additional constraint that any intersection of edges in the

image plane should correspond to a true intersection of edges in space. We prove here

that, under these hypothesis, any motion computed using the functional � of equation 46

is the correct one.

First, we show (in a more precise way than in section 5.2) that the constraints on

motion imposed by two edges meeting at a vertex are suÆcient to compute its correct

two-dimensional velocity; then we show that the knowledge of the velocity at the end-

points of a line segment, together with the motion constraints given along the segment,

are suÆcient for the correct computation of the complete velocity �eld along the whole

segment. Hence, the polyhedron's motion will be entirely determined.

We introduce, within the image plane, the unit vectors u>
i
and u?

i
, parallel, respec-

tively perpendicular to the i-th segment, where i ranges from 1 to 2, and where the

corresponding segments meet at a vertex. We are able to �nd the velocity component

v?
i
by using equation 33, while v>

i
remains undetermined. However, the vertex belongs
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to both segments and has a velocity which should be compatible with the constraints

provided by each one. We may write

u>1 =

 
cos�1
sin�1

!
u?1 =

 
� sin�1
cos�1

!
(63)

u>2 =

 
cos�2
sin�2

!
u?2 =

 
� sin�2
cos�2

!
(64)

which leads to a set of four simultaneous linear equations, valid at the vertex. The

unknowns are only three, i.e. vx, vy and v>1 = v>2 , but the system is not overdetermined

since trigonometric relations do relate each of the equations to all the others.

v = v>1 u
>
1 + v?1 u

?
1 = v>2 u

>
2 + v?2 u

?
2 (65)8>>><

>>>:
vx = v>1 cos�1� v?1 sin�1

vx = v>2 cos�2� v?2 sin�2

vy = v>1 sin�1 + v?1 cos�1

vy = v>2 sin�2 + v?2 cos�2

(66)

We eliminate the unknown v>
i
variables by writing(

vy cos�1 � vx sin�1 = v?1 cos2 �1 + v?1 sin2 �1 = v?1
vy cos�2 � vx sin�2 = v?2 cos2 �2 + v?2 sin2 �2 = v?2

(67)

The solution may be obtained by the Cramer method, yielding

vx =

����� cos�1 v?1
cos�2 v?2

���������� cos�1 � sin�1
cos�2 � sin�2

�����
=

v?2 cos�1 � v?1 cos�2

� sin�2 cos�1 + sin�1 cos�2
(68)

vy =

����� v
?
1 � sin�1
v?2 � sin�2

���������� cos�1 � sin�1
cos�2 � sin�2

�����
=

�v?1 sin�2 + v?2 sin�1

� sin�2 cos�1 + sin�1 cos�2
(69)

We have unambiguously retrieved the velocity v of the vertex, as far as the denominator

of equations 68 or 69 is non-zero. This is the case whenever �1 � �2 6= k�, with k being

any negative, null or positive integer. This restriction is simply an other way of stating

that the two segments have to cross one another.

Now, the �rst step of the demonstration is terminated. We will go on by showing that

if a line segment rotates and translates in space, with known orthographically projected

velocity vectors v1 and v2 at its end-points, then the two-dimensional velocity �eld that

satis�es the constraints given by v?(s) along the projected line, and minimizes �, is the

correct projected velocity �eld.

21



The orientation of the unit vectors u> and u? is �xed along the whole segment for a

given time t. Hence
@v

@s
=

@v>

@s
u> +

@v?

@s
u? (70)

Remembering the second part of equation 37, one may write

� =

Z
s1

s0

����@v@s
����
2

ds =

Z
s1

s0

0
@
 
@v>

@s

!2

+

 
@v?

@s

!2
1
A ds (71)

Since @v?=@s is known, we may ignore, in the minimization process, the last term of

the integrand of equation 71. Introducing, as a constraint, our knowledge of the end-point

velocities, one can describe our problem by the search of a function v>(s) minimizing

� =

Z
s1

s0

 
@v>

@s

!2

ds (72)

and subject to the end-points constraint

Z
s1

s0

@v>

@s
ds = v>1 � v>0 (73)

It can be shown by some isoperimetric analysis that the solution to equations 72 and 73

is always linear ; the sections 8.1 and 8.2 give a formal proof of this fact.

Since both the true component w> of the motion ow �eld and the computed com-

ponent v> of the optical ow �eld are linear functions which satisfy the same end-point

velocities, they must be the very same function. Therefore, the smoothest optical ow

�eld is the correct orthographically projected two-dimensional motion ow �eld for a rigid

polyhedron, when all intersections in the image can be attributed to intersections of edges

in space.

5.7 Conclusion on the smoothness assumption

We have seen that the smoothness assumption of equation 46 is suÆcient to regularize

the otherwise ill-posed problem of optical ow computation; furthermore, we have shown

at least two cases where the obtained optical ow �eld is the correct one. The hypothesis

in the �rst case state that the projection is of a perspective type, that no rotation or

deformation of the moving object is allowed, and that there is no motion along the optical

axis. The hypothesis in the second case state that the projection is of an orthographic

type, that the moving object consists of a rigid polygon, and that every intersection in the

projection plane may be linked to some intersection of the polygon's edges in space.

After the uniqueness and physical plausibility concerns, we still have to �nd some qual-

itative case where the motion computed using this smoothness assumption is consistent

with human perception, in order to completely ful�ll the requirements of section 5.4. This
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indeed can be shown to be the case for such illusions like the barber's pole illusion, where

one is told to look at a spiral wrapped around a rotating cylinder. Human beings usually

perceive a pattern moving along the cylinder's axis, instead of the local motion produced

by the rotation, tangent to the cylinder and perpendicular to the axis. Now, the velocity

ow �eld recovered using a smoothness assumption is subject, for this particular case, to

exactly the same behavior.

5.8 Smoothness computation along a curve

The sections 5.4 through 5.7 have demonstrated that the smoothness assumption was a

good choice for regularizing the computation of the optical ow. We want now to show

some numerical techniques for solving equation 46 in the discrete world of numerical

computations. The task is to build the ow �eld v minimizing � =
R
s2I jrrrvj2 ds under

the constraint v �u?�v? = 0. Merging these two conditions, and introducing a con�dence

weight 2 whose purpose is to take into account the possible errors of measurement, one

may want to minimize

� =

I
s2�

�
jrrrvj2 + 2(s)

�
v(s) � u?(s)� v?(s)

�2�
ds (74)

where we have temporarily restricted ourselves to the computation of the optical ow

along some curve � only. After discretization, the gradient operator rrr will be replaced by

some �nite di�erence. This leads to the minimization of

� =

N�1X
i=0

�
(vx;i � vx;i�1)

2 + (vy;i � vy;i�1)
2
�
+ 2i (vx;iu

?
x;i + vy;iu

?
y;i � v?i )

2 (75)

where N is the number of points used during the minimization process. Note that the

notation above is tuned to a case studied in [Hild 83], where the optical ow �eld is

computed along some contours which are generally closed, and do originate from the zero-

crossings of a Laplacian of a Gaussian of the image. The consequence is that equation 75

is more suited to a unidimensional, circular case; hence, v�1 = vN�1. We will present in

section 5.12 the more general case of a full two-dimensional optical ow �eld.

We have now to solve the 2N simultaneous linear equations(
0 = @�=@vx;i
0 = @�=@vy;i

8i 2 [0; N [ (76)

which can be developed into8<
:
�
4 + 2i(u

?
x;i
)2
�
vx;i � 2vx;i+1 � 2vx;i�1 + 2iu

?
x;i
u?
y;i
vy;i = 2ivi?u?x;i�

4 + 2i(u
?
y;i
)2
�
vy;i � 2vy;i+1 � 2vy;i�1 + 2iu

?
x;i
u?
y;i
vx;i = 2ivi?u?y;i

8i 2 [0; N [ (77)
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The right hand side contains the known, measured terms i and v
?
i
. The left hand-side

contains the unknown variables vx;i and vy;i. Stated in a more concise frame of matrix

formulation, we have to solve

A � v = b (78)

or, equivalently
2N�1X
j=0

ai;jvj = bi 8i 2 [0; 2N [ (79)

where the correspondence between the terms of equation 79 and those of equation 77

should be obvious.

5.9 Solution by matrix inversion

The solution of equation 78 is well known, and quite easy to write in a matrix algebraic

form

v = A�1 � b (80)

However, it is also very clear that the computational cost of this direct matrix inversion

is, to say, high. Keep in mind that N may grow to the size of several of hundreds,

which makes the burden of computing A�1 quiet overwhelming. Notwithstanding that

this matrix inversion scheme is the ultimate, correct solution to our problem, we will try

in the next sections to alleviate the computational load by �nding some approximations

to the solution, which may be less accurate, but more tractable.

5.10 Solution by relaxation algorithms

Consider a reordering of the terms of equation 79; one gets

ai;ivi = bi �
X

j2[0;2N [nfig

ai;jvj 8i 2 [0; 2N [ (81)

where n denotes the suppression operator. This equation can be used as basis for an

iterative search of the solution, trying at each step k to re�ne some initial approximation

described by

k = 0 vki = 0 8i 2 [0; 2N [ (82)

The Jacobi relaxation is inherently parallel. It updates simultaneously each component

of the whole velocity vector to get vk+1 from step k. It proceeds by letting

ai;iv
k+1
i

= bi �
X

j2[0;2N [nfig

ai;jv
k

j 8i 2 [0; 2N [ (83)

The Gauss-Seidel relaxation is inherently sequential. Each component of the velocity

vector is re�ned one after the other, using the actual value of all the other components.
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The update equation is

ai;iv
k+1
i

= bi �
X

j2[0;i[

ai;jv
k+1
j

�
X

j2]i;2N [

ai;jv
k

j i 2 [0; 2N [ (84)

In the notation above (equation 84 only), the i-indexes have to be drawn in an ascending

order from the [0; 2N [ set for the method to work.

Convergence considerations: the matrix A corresponding to the system 77 can be

shown to be symmetric and positive de�nite. This feature is welcome, since in this case

both Jacobi and Gauss-Seidel relaxation algorithms will converge for k !1.

Speed of convergence: the parallelism involved in the Jacobi relaxation is appealing,

but since it usually has to be simulated on a sequential machine, the expected gain in

computation speed is lost. In fact, the Gauss-Seidel relaxation shows a faster convergence

rate in term of number of iterations needed to get an approximation with some given

accuracy.

5.11 Solution by the conjugate gradient algorithm

The algorithm presented in this section does also exhibit convergence for any symmetric

and positive de�nite matrix; its particularity is that the number of iterations needed to

attain the �nal convergence is �nite. The upper bound on the number of iterations can

be shown to be equal to the dimension 2N of the matrix A. The initialization step comes

�rst; then runs the algorithm loop, without any further comments.

Step{I k = 0 q0 = A � v0 � b p0 = b� A � v0

Step{II k = k + 1

Step{III �k = � (qk�1)T �pk�1

(pk�1)T �A�pk�1

Step{IV vk = vk�1 + �kpk�1

Step{V qk = A � v0 � b

Step{VI �k = � (qk)T �A�pk�1

(pk�1)T �A�pk�1

Step{VII pk = �qk + �kpk�1

Step{VIII (qk 6= 0) ) Step{II ^ (qk = 0) ) End.

This algorithm, originating from the mathematical programming �eld [Luen 73], is

very eÆcient in the sense that its convergence is attained in a linear number of steps

(speci�cally, 2N). Furthermore, each step is built with blocks which can be parallelized.
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5.12 Computation of a smooth velocity �eld on a surface

Equation 75 has been written in a way related to the minimization of a ow �eld de�ned

along some curve only. If we decide to use the full two-dimensional retinal plane instead,

we should develop equation 74 into

� =

Z
s2I

 �
@vx

@x

�2
+

�
@vx

@y

�2
+

�
@vy

@x

�2
+

�
@vy

@y

�2
+ 2

�
v � u? � v?

�2!
ds (85)

where the argument s has been generally dropped. The derivation with respect to vx gives

the condition to be ful�lled for the minimization of �

0 =
@�

@vx
=

Z
s2I

�
2
@vx

@x

@(@vx=@x)

@vx
+ 2

@vx

@y

@(@vx=@y)

@vx
+

2
�
2(u?x )

2vx + 2u?x u
?
y vy � 2u?x v

?
��

ds (86)

The same process may be applied to the y-component as well. One gets8<
:

u?x v
? � 1

2

�
@
2
vx

@x2
+ @

2
vx

@y2

�
= (u?x )

2vx + u?x u
?
y vy

u?y v
? � 1

2

�
@
2
vy

@x2
+

@
2
vy

@y2

�
= (u?y )

2vy + u?x u
?
y vx

(87)

The Laplacians standing within the system of equations 87 have to be estimated using

a discrete set of values. A convenient approximation is

r2vx =
@2vx

@x2
+
@2vx

@y2
� 3 (�vx;i;j � vx;i;j) (88)

where the local average �v at location (i; j) in the image is de�ned by

�vx;i;j =
1

6
(vx;i�1;j + vx;i;j+1 + vx;i+1;j + vx;i;j�1) +

1

12
(vx;i�1;j�1 + vx;i�1;j+1 + vx;i+1;j+1 + vx;i+1;j�1) (89)

The equivalent equations for r2vy are so obviously similar to equations 88 through 89

that they are not displayed. Using these approximations, one may write now the system 87

for the discrete case8<
:

u?
x;i;j

v?
i;j
� 3


2

i;j

(�vx;i;j � vx;i;j) = (u?
x;i;j

)2vx;i;j + u?
x;i;j

u?
y;i;j

vy;i;j

u?
y;i;j

v?
i;j
� 3


2

i;j

(�vy;i;j � vy;i;j) = (u?
y;i;j

)2vy;i;j + u?
x;i;j

u?
y;i;j

vx;i;j
(90)

Rearranging the terms, and solving for vx and vy while considering the terms �vx and

�vy as �xed, one gets successively8>><
>>:

vx;i;j

�
(u?

x;i;j
)2 � 3


2

i;j

�
+ vy;i;ju

?
x;i;j

u?
y;i;j

= u?
x;i;j

v?
i;j
� 3


2

i;j

�vx;i;j

vx;i;ju
?
x;i;j

u?
y;i;j

+ vy;i;j

�
(u?

y;i;j
)2 � 3


2

i;j

�
= u?

y;i;j
v?
i;j
� 3


2

i;j

�vy;i;j

(91)
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and 8><
>:

vx;i;j = �vx;i;j + u?
x;i;j

�vx;i;ju
?

x;i;j
+�vy;i;ju

?

y;i;j
�v?

i;j

(3=2
i;j
)�1

vy;i;j = �vy;i;j + u?
y;i;j

�vx;i;ju
?

x;i;j
+�vy;i;ju

?

y;i;j
�v?

i;j

(3=2
i;j
)�1

(92)

This formulation leads very naturally to a Jacobi relaxation algorithm. If one denotes

by k the iteration step, then we have, in a short notation(
vkx = �vk�1x +Nk�1=D

vky = �vk�1y +Nk�1=D
(93)

The method just developed derives the optical ow �eld from a set of two time frames

only; however, if the whole image sequences are available, then there is no reason to

wait for the full convergence of equation 93 using just these two frames [Horn 81]. In

fact, it is possible to interlace the convergence steps k and the time t in order to spread

the computations over many frames, letting the partial result of some iterations from a

previous frame being the initial guess for the next one. As more data is taken into account,

the robustness of the algorithm should be enhanced, provided that the motion is stable

enough.

6 Optical ow �eld in correspondence schemes

We have seen in sections 3 and section 4 two rather di�erent approaches to the computation

of motion. The �rst one surmised that working with the image is more sound than working

with motion. This point of view emphasizes that one should �rst do some image analysis

as preprocessing step (e.g. to segment the scene into moving and non-moving parts), before

attempting to link the results over time in some kind of postprocessing step. The second

approach surmised that motion is not a mere consequence, but can also be a basic, stand-

alone feature for further understanding of the image.

We will now try to reconcile the two views by the introduction of a scheme for motion

computation known as correspondence scheme, where the processing is fairly shared among

image analysis and computation of motion.

6.1 Velocity issued by a correspondence scheme

Suppose that we are able to �nd and to label some points of interest in a �rst image I0;

suppose also that we are able to carry out the same job in a later image I1. If we can

highlight a correspondence between a point of interest p0 = (x0; y0; t0)
T in I0 and its

companion p1 = (x1; y1; t1)
T in I1, then the associated velocity is indeed very simple to

compute:

v0;1x =
x1 � x0

t1 � t0
v0;1y =

y1 � y0

t1 � t0
(94)

where the superscripts show the origin of the points. Note that this equation is not

only trivial, but also fully determined. There is no more need for an assumption like a
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smooth velocity �eld in order to get a de�nite solution; furthermore, there is no need for

the knowledge about the world necessary to achieve the essential step of segmentation

of section 3. However, there is a drawback: �nding the correct set of correspondences

between the points of interest is not an easy task at all. Before we attempt to solve this

problem, we will �rst show how to extract the points of interest.

6.2 Points of interest in image sequences

Concentrate now on a single frame I of the image sequences. Our task is to detect in

this frame some candidate points for later matching, subject to the requirement that they

can be locally identi�ed by some particular characteristic allowing their recognition in a

subsequent frame. For this purpose, we will make use here of an interest-operator termed

the Moravec operator [Mora 77].

The input of this operatorM is some local patchN0[N1[N2 of the image I; the output

is a binary decision stating if the location of this patch is candidate or is no candidate.

The criterion used for this decision deals with the local energy within the patch; if it is

too low, then there are not enough local features to be able do distinguish this patch from

an other one. Conversely, if too much activity has to be considered, then any added noise

will render the identi�cation unreliable. The Moravec operator is constructed in such a

way that it should �nd a compromise between the two activity extremes.

As a �rst step, compute the local energy s of the image I by

s2(x) =

Z
�x2N0

(I(x+�x)� I(x))2 d�x (95)

where N0 is some local neighborhood. Then, the �rst guess for the Moravec operator is

M1(x) = min
�x2N1

s2(x+�x) (96)

where the size of the neighborhood N1 de�nes the precision of the operator. A good choice

is usually N1 = N0. Only the local maxima are retained, which leading to

M2(x) =

(
M1(x) M1(x) = max�x2N2

M1(x+�x)

0 M1(x) 6= max�x2N2
M1(x+�x)

(97)

In the above equation, the size of the neighborhood N2 determines in some way the

fraction of the �rst guesses to be kept. If it is large with respect to N1, then only few

points will be kept. Conversely, if N2 is empty, then all points will be considered for the

next processing step. Usually, we chose N2 = N1 to hold true. The �nal value for the

Moravec operator is obtained by a thresholding stage

M(x) =

(
candidate M2(x) > T

no candidate M2(x) � T
(98)

where T is some empirical threshold.
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6.3 Correspondence problem

We dispose of some sets of points of interest. Each set belongs to a given frame. Suppose

now that we want to register one frame with respect to another one, considering motion

as a warping parameter. We will term the �rst image I0 and give i-indexes to points of

interest in this image. The second image will be I1, and its points of interest will be

indexed with j. If card(fig) = Ni and card(fjg) = Nj , and if we agree that Ni � Nj ,

then the number of di�erent possible pairings (no surjections) is as high as Ni!=(Ni�Nj)!,

which is very big since Ni is usually of a magnitude near to Nj . This observation implies

that it is impossible, from a practical point of view, to select the best registration among

the exhaustive set of possibilities; one needs some heuristic in order to restrict and guide

the choice for a convenient correspondence.

The heuristics at hand can be stated in a way reecting some basic knowledge of

the world. Hopefully, this knowledge lies at a far lower level than was required for the

segmentation needed when separating background from moving object (optical ow �eld

in transformation domains). We present some of the heuristics hereafter.

� Maximal speed: We keep as potential matches to a given point of interest pi 2 I0
only the candidate points of interest pj 2 I1 such that

jpj � pij � Vmax (99)

where Vmax is the maximum velocity allowed. Every match standing for a higher

speed should be rejected.

� Grey-level spatial coherence: We attribute an initial probability P 0
i;j

to each match

between some points of interest referenced by i in the �rst image, and its partner j in

the second image. This initial match's probability is dependent upon the similarity

of the two image patches; it is de�ned by

P 0
i;j = 1=

�
1 + C

Z
�x2N3

(I1(pj +�x)� I0(pi))
2 d�x

�
(100)

where C is some normalization constant, and N3 a domain whose size is adjusted to

�t our needs. The value of this initial probability may be compared to a threshold

in order to decide if the corresponding match has to be taken into account or not.

� Motion coherence: We decide to exclude a potential match (k; l) if the resulting

motion is not coherent with some already granted match (i; j), where pk is some

neighbor of pi. The remaining matches (m;n) consistent with the match (i; j), both

in terms of neighborhood and in terms of motion, form a set Mi;j such that

Mi;j = f(m;n) j (jvm;n � vi;j j � �Vmax) ^ (pm � pi 2 N4)g (101)

where vi;j is de�ned by vi;j = pj � pi, �Vmax is the coherence bound for velocity,

and where N4 is the coherence domain.
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� Bijection criterion: As occlusions may occur anywhere, one should consider the case

where several points of interest share the same projection in the image plane. For

that matter, it makes sense to allow a given pi in the �rst frame to generate at the

same time several correspondences with the other frame. On the other hand, the

probability that such cases do occur is rather small. Therefore, the imposition of a

one-to-one mapping is generally seen as more bene�cial, in terms of reduction of the

correspondence search space, than detrimental in terms of decrease in performances.

6.4 Solution to the correspondence problem

One solution to the correspondence problem can be found in [Barn 79], where all the

heuristics described in section 6.3 have been used. In particular, the contribution from

the heuristic for grey-level spatial coherence stays at the heart of the method. In fact,

the order of the operations is �rst to restrict as far as possible the number of candidate

matches by using all heuristics together. Then, we may iteratively update the matching

probabilities of equation 100 by using some rules, until these probabilities converge to

either a high or a low value; those matches with high probability value will be kept as

solutions.

We de�ne the goodness qk
i;j

of a particular match (i; j) by

qki;j =
X

(m;n)2Mi;j

P k�1
i;j

(102)

where k is the iteration step, and where the set Mi;j has been de�ned in equation 101;

the initial guess P 0
i;j

results from equation 100. Then, we compute the new, unnormalized

probability for match (i; j), writing

~P k

i;j = P k�1
i;j

(�+ qki;j) (103)

where � is some update decay, and  some gain factor related to the cardinality of the set

Mi;j . We normalize the probability value by simply letting

P k

i;j =
~P k

i;j =
X

(m;n)2Mi;j

~P k

m;n (104)

The convergence is attained only for k ! 1, but some probability values begin to

emerge rather quickly. In order to speed up the convergence rate, one may want to accept

immediately their corresponding match, and remove it from the set of potential candidates.

6.5 Relation to gradient scheme

To conclude, we will compare the optical ow �eld, as obtained using a Gradient Scheme

(GS), with the optical ow �eld obtained using a Correspondence Scheme (CS). This

comparison demonstrates that each method has some advantages and some drawbacks,

with no clear winner.
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� Spatial density

GS: The optical ow �eld is de�ned almost everywhere. The only points where it is

unde�ned are those where the gradient is non-existent, i.e. jrrrIj = 0. Therefore,

the velocity �eld in a gradient scheme is very dense.

CS: The optical ow �eld is de�ned only at certain points of interest, the number of

which being under control. But the correspondence scheme is only attractive

when a number of points of interest not too high has to be taken into account.

Therefore, the velocity �eld in a correspondence scheme is low.

� Temporal density

GS: The temporal precision in a gradient scheme is high for a given velocity, since

the derivatives have to be estimated over a short time interval �t.

CS: The temporal precision in a correspondence scheme is low, since the displace-

ment between the two frames has to be large with respect to the spatial quan-

tization step. This constraint implies a long time interval �t between the

acquisition of the two frames.

� Motion range

GS: The upper and lower bounds of the velocities detected in a gradient scheme for

motion estimation are dependent from the image itself. If the image is highly

contrasted, then slow movements will be fairly computed, while high velocities

will be badly estimated. On the contrary, a very smooth image will show a

higher tolerance for high velocities, but will tend to have quantization problem

for slow motions.

CS: The lower bound for motion detection in a correspondence scheme is dependent

upon the accuracy of the position of points of interest. If a simple method is

used, then this accuracy can be at most equal to the spatial quantization step.

The upper bound is dependent, among other things, upon the parameter Vmax

of equation 99.

� Aperture problem

GS: The gradient scheme is notorious for the ability to compute the component of

velocity in the direction of the local gradient only; the component's tangent to

the edge is lost. The regularization of this problem requires the introduction of

a smoothness assumption.

CS: The correspondence scheme requires the registration of one frame with respect

to the other, considering motion as a warping deformation. Now, a limited

number of tokens is selected in each frame, and the registration is done using

these tokens. If their size is too small, then it can happen that an insuÆ-

cient number of features is available to reliably distinguish one from an other.

This is usually the case for the algorithm described. Then, the solution of the

correspondence problem requires the introduction of several heuristics.
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� Robustness

GS: The gradient scheme is locally poorly robust, since it is based on the numerical

computation of derivatives. However, it produces a dense velocity �eld, and

many values can be fed to an averaging or smoothing �lter in order to enhance

the general reliability.

CS: The correspondence scheme for computing an optical ow �eld is as robust as

the correspondence allows; but the low density of the resulting �eld prevents

one to use postprocessing steps for result enhancement.

� Complexity

GS: In a gradient scheme, the complexity of computing the local component of

motion along the gradient direction is low. The complexity of recovering the

component of motion perpendicular to the gradient direction is much higher.

CS: In a correspondence scheme, the complexity of �nding the interest points is

low, but the complexity of establishing the correspondences is high. Once the

correspondences are found, the task of motion computation is of a vanishing

complexity.

7 Relation to human perception

The biological visual system is basically a continuous system, even if the receptive �eld

is built of a �nite number of discrete cells, and even if the action potential spikes issued

from these cells are discrete events. Now, this continuous system is not only able to deal

with the continuous motions of the natural world, but it obviously can accept some visual

input which is not continuous, too, and still treat it as if it were a smooth, uninterrupted

motion. The success of motion-pictures, or of television systems, proves it.

Interestingly, the two main computational processes discussed in this lecture can �nd

a counterpart in human vision, although these processes are discrete. The intensity-based

method, or gradient scheme, can be associated to some short range process, where at least

ten frames per second have to be presented, and where the visual angle velocity should not

exceed �fteen minutes of arc per frame, in order to be perceived as a smooth movement.

The token-based method, or correspondence scheme, can be associated to some long range

process, where the frames can be as few as two and a half per second, and where the visual

angle velocity can be as high as ten degrees per frame, while still allowing reliable object

tracking.

As a conclusion, we should mention that the human visual system seems to solve quite

eÆciently the problem of smoothness computation; this is not a surprise, since we have

seen that this problem could be parallelized and distributed over time. The human visual

system is also capable to handle the correspondence task quite well; in this respect, the

technical solution proposed in this lecture is still perfectible. Another aspect, left open

until now, is the detection of motion discontinuities; here also, the race between the human

beings and the silicon beings is won by the former.
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8 Appendices

8.1 Euler equation

The Euler equation is a relation satis�ed when minimizing an integral of a well de�ned

kind. First, we will give the general frame for establishing this equation, and then we will

apply it to the problem of section 5.6.

Consider the task of �nding the minimum of

� =

Z
x1

x0

f(x; y; y0) dx (105)

We build the auxiliary function ~y

~y(x) = y(x) + ��(x) (106)

where �(x) is any di�erentiable function subject to

�(x0) = �(x1) = 0 (107)

We may then write a new functional � dependent upon � only

�(�) =

Z
x1

x0

f(x; ~y; ~y0) dx =

Z
x1

x0

f(x; y(x) + ��(x); y0(x) + ��0(x)) dx (108)

Derivating equation 108 with respect to � yields

d�(�)

d�
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Z
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x0

�
@f

@x

dx

d�
+
@f

@~y

d~y
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+
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d~y0

d�

�
dx (109)

Using equation 106 and selecting � = 0, one can minimize �

d�(�)

d�

����
�=0

=
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x1

x0

�
@f

@y
�(x) +
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@y0
�0(x)
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=

Z
x1

x0
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�(x) dx+
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�(x)

����
x1

x0

�
Z

x1

x0

d

dx

�
@f

@y0

�
�(x) dx

= 0 (110)

The condition we imposed on the otherwise free function �(x) at equation 107 implies

that

0 =

Z
x1

x0

�
@f

@y
� d

dx

�
@f

@y0

��
�(x) dx (111)

We may now build �(x) in such a way that

sign(�(x)) = sign

�
@f

@y
� d

dx

�
@f

@y0

��
(112)
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Finally, the Euler relation stems from equations 111 and 112

@f

@y
� d

dx

�
@f

@y0

�
= 0 (113)

In our case, we have x = s, y = v> and f(x; y; y0) = (@v>=@s)2 = (y0)2.

8.2 Lagrange multiplier

Consider now the more subtle minimization of an integral subject to some other integral

condition. We keep equation 105, but we take into consideration the constraint

G =

Z
x1

x0

g(x; y; y0) dx (114)

where g is a �xed function, and G a �xed value. We may then introduce an auxiliary

function h, such that

h(x; y; y0) = f(x; y; y0) + �g(x; y; y0) (115)

where � is termed the Lagrange multiplier . As the minimization of h is equivalent to the

minimization of f , we get from the Euler relation

@h

@y
� d

dx

�
@h

@y0

�
= 0 (116)

Writing some well chosen total derivative yields

d

dx
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=
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d

dx
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@h
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y00
�

=
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+

�
@h
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� d

dx

�
@h

@y0

��
y0 (117)

Remembering equation 116, and observing that h is not explicitly dependent upon x

(@h=@x = 0), we have the following implication

d

dx

�
h� @h

@y0
y0
�
= 0 (118)

In our case, we are subject to the conditions g = @v>=@s and G = v>1 � v>0 . The other

variables have already been introduced at the end of section 8.1; this leads to

h� @h

@y0
y0 =

 
@v>

ds

!2

+ �v> � (2
@v>

ds
+ �)

@v>

ds
= �

 
@v>

ds

!2

= �C (119)

where C is some constant obtained during the inde�nite integration of equation 118. This

constant has to be speci�ed by the boundary conditions for v>(s), yielding a linear solution

v>(s) =
v>1 � v>0
s1 � s0

(s� s0) + v>0 (120)
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